Background In this study, we compared four models for predicting rice blast disease, two operational process-based models (Yoshino and Water Accounting Rice Model (WARM)) and two approaches based on machine learning algorithms (M5Rules and Recurrent Neural Networks (RNN)), the former inducing a rule-based model and the latter building a neural network. In situ telemetry is important to obtain quality in-field data for predictive models and this was a key aspect of the RICE-GUARD project on which this study is based. According to the authors, this is the first time process-based and machine learning modelling approaches for supporting plant disease management are compared. Results Results clearly showed that the models succeeded in providing a warning of rice blast onset and presence, thus representing suitable solutions for preventive remedial actions targeting the mitigation of yield losses and the reduction of fungicide use. All methods gave significant "signals" during the "early warning" period, with a similar level of performance. M5Rules and WARM gave the maximum average normalized scores of 0.80 and 0.77, respectively, whereas Yoshino gave the best score for one site (Kalochori 2015). The best average values of r and r(2) and %MAE (Mean Absolute Error) for the machine learning models were 0.70, 0.50 and 0.75, respectively and for the process-based models the corresponding values were 0.59, 0.40 and 0.82. Thus it has been found that the ML models are competitive with the process-based models. This result has relevant implications for the operational use of the models, since most of the available studies are limited to the analysis of the relationship between the model outputs and the incidence of rice blast. Results also showed that machine learning methods approximated the performances of two process-based models used for years in operational contexts. Conclusions Process-based and data-driven models can be used to provide early warnings to anticipate rice blast and detect its presence, thus supporting fungicide applications. Data-driven models derived from machine learning methods are a viable alternative to process-based approaches and - in cases when training datasets are available - offer a potentially greater adaptability to new contexts.

Predicting rice blast disease: machine learning versus process-based models / D.F. Nettleton, D. Katsantonis, A. Kalaitzidis, N. Sarafijanovic-Djukic, P. Puigdollers, R. Confalonieri. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 20:1(2019 Oct 22). [10.1186/s12859-019-3065-1]

Predicting rice blast disease: machine learning versus process-based models

R. Confalonieri
Ultimo
2019

Abstract

Background In this study, we compared four models for predicting rice blast disease, two operational process-based models (Yoshino and Water Accounting Rice Model (WARM)) and two approaches based on machine learning algorithms (M5Rules and Recurrent Neural Networks (RNN)), the former inducing a rule-based model and the latter building a neural network. In situ telemetry is important to obtain quality in-field data for predictive models and this was a key aspect of the RICE-GUARD project on which this study is based. According to the authors, this is the first time process-based and machine learning modelling approaches for supporting plant disease management are compared. Results Results clearly showed that the models succeeded in providing a warning of rice blast onset and presence, thus representing suitable solutions for preventive remedial actions targeting the mitigation of yield losses and the reduction of fungicide use. All methods gave significant "signals" during the "early warning" period, with a similar level of performance. M5Rules and WARM gave the maximum average normalized scores of 0.80 and 0.77, respectively, whereas Yoshino gave the best score for one site (Kalochori 2015). The best average values of r and r(2) and %MAE (Mean Absolute Error) for the machine learning models were 0.70, 0.50 and 0.75, respectively and for the process-based models the corresponding values were 0.59, 0.40 and 0.82. Thus it has been found that the ML models are competitive with the process-based models. This result has relevant implications for the operational use of the models, since most of the available studies are limited to the analysis of the relationship between the model outputs and the incidence of rice blast. Results also showed that machine learning methods approximated the performances of two process-based models used for years in operational contexts. Conclusions Process-based and data-driven models can be used to provide early warnings to anticipate rice blast and detect its presence, thus supporting fungicide applications. Data-driven models derived from machine learning methods are a viable alternative to process-based approaches and - in cases when training datasets are available - offer a potentially greater adaptability to new contexts.
rice blast; forecasting; machine learning; predictive models; rule induction; neural networks
Settore AGR/02 - Agronomia e Coltivazioni Erbacee
22-ott-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
2019 Nettleton et al. - blast AI vs process based.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 7.33 MB
Formato Adobe PDF
7.33 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/686807
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 18
social impact