We consider an overdetermined problem for the Finsler Laplacian in the exterior of a convex domain in RN, establishing a symmetry result for the anisotropic capacitary potential. Our result extends the one of Reichel (Arch Ration Mech Anal 137(4):381–394, 1997), where the usual Newtonian capacity is considered, giving rise to an overdetermined problem for the standard Laplace equation. Here, we replace the usual Euclidean norm of the gradient with an arbitrary norm H. The resulting symmetry of the solution is that of the so-called Wulff shape (a ball in the dual norm H0).

An overdetermined problem for the anisotropic capacity / C. Bianchini, G. Ciraolo, P. Salani. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 55:4(2016), pp. 84.1-84.24.

An overdetermined problem for the anisotropic capacity

G. Ciraolo;
2016

Abstract

We consider an overdetermined problem for the Finsler Laplacian in the exterior of a convex domain in RN, establishing a symmetry result for the anisotropic capacitary potential. Our result extends the one of Reichel (Arch Ration Mech Anal 137(4):381–394, 1997), where the usual Newtonian capacity is considered, giving rise to an overdetermined problem for the standard Laplace equation. Here, we replace the usual Euclidean norm of the gradient with an arbitrary norm H. The resulting symmetry of the solution is that of the so-called Wulff shape (a ball in the dual norm H0).
Partial-differential-equations; gradient bounds; wulff shape; hypersurfaces; inequality; degenerate; domains
Settore MAT/05 - Analisi Matematica
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
22 - ciraolo_bianchini_salani_CalcVar.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 584.87 kB
Formato Adobe PDF
584.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
BianchiniCiraoloSalani_CalcVar_REVISED.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 369.94 kB
Formato Adobe PDF
369.94 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/675308
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 32
social impact