The impact of stellar multiplicity on the evolution of planet-forming disks is still the subject of debate. Here we present and analyze disk structures around ten multiple stellar systems that were included in an unbiased, high spatial resolution survey performed with ALMA of 32 protoplanetary disks in the Taurus star-forming region. At the unprecedented spatial resolution of similar to 0.12 '' we detect and spatially resolve the disks around all primary stars, and those around eight secondary and one tertiary star. The dust radii of disks around multiple stellar systems are smaller than those around single stars in the same stellar mass range and in the same region. The disks in multiple stellar systems also show a steeper decay of the millimeter continuum emission at the outer radius than disks around single stars, suggestive of the impact of tidal truncation on the shape of the disks in multiple systems. However, the observed ratio between the dust disk radii and the observed separation of the stars in the multiple systems is consistent with analytic predictions of the effect of tidal truncation only if the eccentricities of the binaries are rather high (typically >0.5) or if the observed dust radii are a factor of two smaller than the gas radii, as is typical for isolated systems Similar high-resolution studies targeting the gaseous emission from disks in multiple stellar systems are required to resolve this question.

Observational constraints on dust disk sizes in tidally truncated protoplanetary disks in multiple systems in the Taurus region / C.F. Manara, M. Tazzari, F. Long, G.J. Herczeg, G. Lodato, A.A. Rota, P. Cazzoletti, G. van der Plas, P. Pinilla, G. Dipierro, S. Edwards, D. Harsono, D. Johnstone, Y. Liu, F. Menard, B. Nisini, E. Ragusa, Y. Boehler, S. Cabrit. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 628(2019 Aug 13). [10.1051/0004-6361/201935964]

Observational constraints on dust disk sizes in tidally truncated protoplanetary disks in multiple systems in the Taurus region

G. Lodato;E. Ragusa;
2019

Abstract

The impact of stellar multiplicity on the evolution of planet-forming disks is still the subject of debate. Here we present and analyze disk structures around ten multiple stellar systems that were included in an unbiased, high spatial resolution survey performed with ALMA of 32 protoplanetary disks in the Taurus star-forming region. At the unprecedented spatial resolution of similar to 0.12 '' we detect and spatially resolve the disks around all primary stars, and those around eight secondary and one tertiary star. The dust radii of disks around multiple stellar systems are smaller than those around single stars in the same stellar mass range and in the same region. The disks in multiple stellar systems also show a steeper decay of the millimeter continuum emission at the outer radius than disks around single stars, suggestive of the impact of tidal truncation on the shape of the disks in multiple systems. However, the observed ratio between the dust disk radii and the observed separation of the stars in the multiple systems is consistent with analytic predictions of the effect of tidal truncation only if the eccentricities of the binaries are rather high (typically >0.5) or if the observed dust radii are a factor of two smaller than the gas radii, as is typical for isolated systems Similar high-resolution studies targeting the gaseous emission from disks in multiple stellar systems are required to resolve this question.
protoplanetary disks; binaries: visual; binaries: general; stars: formation; stars: variables: T Tauri, Herbig Ae/Be
Settore FIS/05 - Astronomia e Astrofisica
   Dust and gas in planet forming discs (DUSTBUSTER)
   DUSTBUSTER
   EUROPEAN COMMISSION
   H2020
   823823
13-ago-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Manara+19a_compressed.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.55 MB
Formato Adobe PDF
2.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/674888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 59
social impact