Traditional authentication systems use alphanumeric or graphical passwords, or token-based techniques that require "something you know and something you have". The disadvantages of these systems include the risks of forgetfulness, loss, and theft. To address these shortcomings, biometric authentication is rapidly replacing traditional authentication methods and is becoming a part of everyday life. The electrocardiogram (ECG) is one of the most recent traits considered for biometric purposes. In this work we describe an ECG-based authentication system suitable for security checks and hospital environments. The proposed system will help investigators studying ECG-based biometric authentication techniques to define dataset boundaries and to acquire high-quality training data. We evaluated the performance of the proposed system and found that it could achieve up to the 92% identification accuracy. In addition, by applying the Amang ECG (amgecg) toolbox within MATLAB, we investigated the two parameters that directly affect the accuracy of authentication: the ECG slicing time (sliding window) and the sampling time period, and found their optimal values.
An enhanced electrocardiogram biometric authentication system using machine learning / E.A. Alkeem, S. Kim, C.Y. Yeun, M.J. Zemerly, K. Poon, G. Gianini, P.D. Yoo. - In: IEEE ACCESS. - ISSN 2169-3536. - 7(2019 Aug), pp. 123069-123075.
An enhanced electrocardiogram biometric authentication system using machine learning
G. Gianini;
2019
Abstract
Traditional authentication systems use alphanumeric or graphical passwords, or token-based techniques that require "something you know and something you have". The disadvantages of these systems include the risks of forgetfulness, loss, and theft. To address these shortcomings, biometric authentication is rapidly replacing traditional authentication methods and is becoming a part of everyday life. The electrocardiogram (ECG) is one of the most recent traits considered for biometric purposes. In this work we describe an ECG-based authentication system suitable for security checks and hospital environments. The proposed system will help investigators studying ECG-based biometric authentication techniques to define dataset boundaries and to acquire high-quality training data. We evaluated the performance of the proposed system and found that it could achieve up to the 92% identification accuracy. In addition, by applying the Amang ECG (amgecg) toolbox within MATLAB, we investigated the two parameters that directly affect the accuracy of authentication: the ECG slicing time (sliding window) and the sampling time period, and found their optimal values.File | Dimensione | Formato | |
---|---|---|---|
Ebrahim_paper_PUBLISHED_VERSION_.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
4.61 MB
Formato
Adobe PDF
|
4.61 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.