We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads.

Lower Arm Muscle Activation during Indirect-Localized Vibration : the Influence of Skill Levels When Applying Different Acceleration Loads / J. Padulo, R. Di Giminiani, A. Dello Iacono, A.M. Zagatto, G.M. Migliaccio, Z. Grgantov, L.P. Ardigo'. - In: FRONTIERS IN PHYSIOLOGY. - ISSN 1664-042X. - 7:(2016), pp. 242.1-242.8. [10.3389/fphys.2016.00242]

Lower Arm Muscle Activation during Indirect-Localized Vibration : the Influence of Skill Levels When Applying Different Acceleration Loads

J. Padulo;
2016

Abstract

We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads.
fatigue; motor behavior; muscle contraction; sports; vibration
Settore M-EDF/02 - Metodi e Didattiche delle Attivita' Sportive
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
Padulo FP 2016 Lower Arm Muscle Activation during Indirect-Localized Vibration.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 806.69 kB
Formato Adobe PDF
806.69 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/671521
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact