Common methods to estimate vertical jump height (VJH) are based on the measurements of flight time (FT) or vertical reaction force. This study aimed to assess the measurement errors when estimating the VJH with flight time using photocell devices in comparison with the gold standard jump height measured by a force plate (FP). The second purpose was to determine the intrinsic reliability of the Optojump photoelectric cells in estimating VJH. For this aim, 20 subjects (age: 22.50±1.24 years) performed maximal vertical jumps in three modalities in randomized order: the squat jump (SJ), counter-movement jump (CMJ), and CMJ with arm swing (CMJarm). Each trial was simultaneously recorded by the FP and Optojump devices. High intra-class correlation coefficients (ICCs) for validity (0.98-0.99) and low limits of agreement (less than 1.4 cm) were found; even a systematic difference in jump height was consistently observed between FT and double integration of force methods (-31% to -27%; p<0.001) and a large effect size (Cohen'sd>1.2). Intra-session reliability of Optojump was excellent, with ICCs ranging from 0.98 to 0.99, low coefficients of variation (3.98%), and low standard errors of measurement (0.8 cm). It was concluded that there was a high correlation between the two methods to estimate the vertical jump height, but the FT method cannot replace the gold standard, due to the large systematic bias. According to our results, the equations of each of the three jump modalities were presented in order to obtain a better estimation of the jump height.

Measurement errors when estimating the vertical jump height with flight time using photocell devices: the example of Optojump / A. Attia, W. Dhahbi, A. Chaouachi, J. Padulo, D.P. Wong, K. Chamari. - In: BIOLOGY OF SPORT. - ISSN 0860-021X. - 34:1(2017), pp. 63-70. [10.5114/biolsport.2017.63735]

Measurement errors when estimating the vertical jump height with flight time using photocell devices: the example of Optojump

J. Padulo
Investigation
;
2017

Abstract

Common methods to estimate vertical jump height (VJH) are based on the measurements of flight time (FT) or vertical reaction force. This study aimed to assess the measurement errors when estimating the VJH with flight time using photocell devices in comparison with the gold standard jump height measured by a force plate (FP). The second purpose was to determine the intrinsic reliability of the Optojump photoelectric cells in estimating VJH. For this aim, 20 subjects (age: 22.50±1.24 years) performed maximal vertical jumps in three modalities in randomized order: the squat jump (SJ), counter-movement jump (CMJ), and CMJ with arm swing (CMJarm). Each trial was simultaneously recorded by the FP and Optojump devices. High intra-class correlation coefficients (ICCs) for validity (0.98-0.99) and low limits of agreement (less than 1.4 cm) were found; even a systematic difference in jump height was consistently observed between FT and double integration of force methods (-31% to -27%; p<0.001) and a large effect size (Cohen'sd>1.2). Intra-session reliability of Optojump was excellent, with ICCs ranging from 0.98 to 0.99, low coefficients of variation (3.98%), and low standard errors of measurement (0.8 cm). It was concluded that there was a high correlation between the two methods to estimate the vertical jump height, but the FT method cannot replace the gold standard, due to the large systematic bias. According to our results, the equations of each of the three jump modalities were presented in order to obtain a better estimation of the jump height.
Flight time; Muscle power; Performance analysis; Vertical jump
Settore M-EDF/02 - Metodi e Didattiche delle Attivita' Sportive
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
Attia BS 2017 Measurement errors when estimating the vertical jump height with flight time using photocell devices the example of Optojump.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 668.32 kB
Formato Adobe PDF
668.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/670929
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 48
social impact