OBJECTIVE: Brain mapping techniques allow one to effectively approach tumors involving the primary motor cortex (M1). Tumor resectability and maintenance of patient integrity depend on the ability to successfully identify motor tracts during resection by choosing the most appropriate neurophysiological paradigm for motor mapping. Mapping with a high-frequency (HF) stimulation technique has emerged as the most efficient tool to identify motor tracts because of its versatility in different clinical settings. At present, few data are available on the use of HF for removal of tumors predominantly involving M1. METHODS: The authors retrospectively analyzed a series of 102 patients with brain tumors within M1, by reviewing the use of HF as a guide. The neurophysiological protocols adopted during resections were described and correlated with patients' clinical and tumor imaging features. Feasibility of mapping, extent of resection, and motor function assessment were used to evaluate the oncological and functional outcome to be correlated with the selected neurophysiological parameters used for guiding resection. The study aimed to define the most efficient protocol to guide resection for each clinical condition. RESULTS: The data confirmed HF as an efficient tool for guiding resection of M1 tumors, affording 85.3% complete resection and only 2% permanent morbidity. HF was highly versatile, adapting the stimulation paradigm and the probe to the clinical context. Three approaches were used. The first was a "standard approach" (HF "train of 5," using a monopolar probe) applied in 51 patients with no motor deficit and seizure control, harboring a well-defined tumor, showing contrast enhancement in most cases, and reaching the M1 surface. Complete resection was achieved in 72.5%, and 2% had permanent morbidity. The second approach was an "increased train approach," that is, an increase in the number of pulses (7-9) and of pulse duration, using a monopolar probe. This second approach was applied in 8 patients with a long clinical history, previous treatment (surgery, radiation therapy, chemotherapy), motor deficit at admission, poor seizure control, and mostly high-grade gliomas or metastases. Complete resection was achieved in 87.5% using this approach, along with 0% permanent morbidity. The final approach was a "reduced train approach," which was the combined use of train of 2 or train of 1 pulses associated with the standard approach, using a monopolar or bipolar probe. This approach was used in 43 patients with a long clinical history and poorly controlled seizures, harboring tumors with irregular borders without contrast enhancement (low or lower grade), possibly not reaching the cortical surface. Complete resection was attained in 88.4%, and permanent morbidity was found in 2.3%. CONCLUSIONS: Resection of M1 tumors is feasible and safe. By adapting the stimulation paradigm and probe appropriately to the clinical context, the best resection and functional results can be achieved.

Resection of tumors within the primary motor cortex using high-frequency stimulation: oncological and functional efficiency of this versatile approach based on clinical conditions / M. Rossi, M. Conti Nibali, L. Viganò, G. Puglisi, H. Howells, L. Gay, T. Sciortino, A. Leonetti, M. Riva, L. Fornia, G. Cerri, L. Bello. - In: JOURNAL OF NEUROSURGERY. - ISSN 1933-0693. - 133:3(2020 Sep), pp. 611-946. [10.3171/2019.5.JNS19453]

Resection of tumors within the primary motor cortex using high-frequency stimulation: oncological and functional efficiency of this versatile approach based on clinical conditions

M. Rossi;M. Conti Nibali;L. Viganò;G. Puglisi;H. Howells;L. Gay;T. Sciortino;A. Leonetti;M. Riva;L. Fornia;G. Cerri;L. Bello
2020

Abstract

OBJECTIVE: Brain mapping techniques allow one to effectively approach tumors involving the primary motor cortex (M1). Tumor resectability and maintenance of patient integrity depend on the ability to successfully identify motor tracts during resection by choosing the most appropriate neurophysiological paradigm for motor mapping. Mapping with a high-frequency (HF) stimulation technique has emerged as the most efficient tool to identify motor tracts because of its versatility in different clinical settings. At present, few data are available on the use of HF for removal of tumors predominantly involving M1. METHODS: The authors retrospectively analyzed a series of 102 patients with brain tumors within M1, by reviewing the use of HF as a guide. The neurophysiological protocols adopted during resections were described and correlated with patients' clinical and tumor imaging features. Feasibility of mapping, extent of resection, and motor function assessment were used to evaluate the oncological and functional outcome to be correlated with the selected neurophysiological parameters used for guiding resection. The study aimed to define the most efficient protocol to guide resection for each clinical condition. RESULTS: The data confirmed HF as an efficient tool for guiding resection of M1 tumors, affording 85.3% complete resection and only 2% permanent morbidity. HF was highly versatile, adapting the stimulation paradigm and the probe to the clinical context. Three approaches were used. The first was a "standard approach" (HF "train of 5," using a monopolar probe) applied in 51 patients with no motor deficit and seizure control, harboring a well-defined tumor, showing contrast enhancement in most cases, and reaching the M1 surface. Complete resection was achieved in 72.5%, and 2% had permanent morbidity. The second approach was an "increased train approach," that is, an increase in the number of pulses (7-9) and of pulse duration, using a monopolar probe. This second approach was applied in 8 patients with a long clinical history, previous treatment (surgery, radiation therapy, chemotherapy), motor deficit at admission, poor seizure control, and mostly high-grade gliomas or metastases. Complete resection was achieved in 87.5% using this approach, along with 0% permanent morbidity. The final approach was a "reduced train approach," which was the combined use of train of 2 or train of 1 pulses associated with the standard approach, using a monopolar or bipolar probe. This approach was used in 43 patients with a long clinical history and poorly controlled seizures, harboring tumors with irregular borders without contrast enhancement (low or lower grade), possibly not reaching the cortical surface. Complete resection was attained in 88.4%, and permanent morbidity was found in 2.3%. CONCLUSIONS: Resection of M1 tumors is feasible and safe. By adapting the stimulation paradigm and probe appropriately to the clinical context, the best resection and functional results can be achieved.
AED = antiepileptic drug; DWI = diffusion-weighted imaging; ECoG = electrocorticography; EEG = electroencephalography; EMG = electromyography; EOR = extent of resection; HF = high frequency; HGG = high-grade glioma; LGG = low-grade glioma; MEP = motor-evoked potential; MRC = Medical Research Council; MT = motor threshold; To2 = train of 2; To5 = train of 5; cMT = cortical motor threshold; clinical outcome; deficit; extent of resection; functional balance; gliomas; intraoperative mapping; morbidity; neurophysiology; oncology; sMT = subcortical motor threshold
Settore MED/27 - Neurochirurgia
Settore BIO/09 - Fisiologia
set-2020
9-ago-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
[19330693 - Journa.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 658.12 kB
Formato Adobe PDF
658.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/670845
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 33
social impact