Local cerebral blood flow (LCBF) was evaluated with the [ 14 C]iodoantipyrine quantitative autoradiographic technique in 29 brain structures in conscious control rats and during fentanyl-induced electroencephalographic (EEG) spike and/or seizure activity and in the postseizure EEG suppression phase. During spike activity, LCBF increased in all structures; the increase reached statistical significance (p<0.05) in the superior colliculus, sensorimotor cortex, and pineal body (+130%, +187%, and +185% from control, respectively). With progressive development of seizure activity, LCBF significantly increased in 24 brain structures (range, +58% to +231% from control). During the postseizure EEG suppression phase, LCBF remained elevated in all structures (+80% to +390% from control). The local cerebrovascular resistance (LCVR) significantly decreased in 10 of 29 structures with the onset of spike activity (range, -24% to -64%), and remained decreased in all brain structures during seizure activity (range, -34% to -67%) and during the EEG suppression phase (range, -24% to 74%). This reduction of LCVR represents a near maximal state of cerebrovasodilation during fentanyl-induced EEG seizure or postseizure suppression activity. The global nature of the LCBF elevation indicates that factors other than local metabolic control are responsible for CBF regulation during local seizure activity

Local cerebral blood flow with fentanyl-induced seizures / T. Maekawa, C. Tommasino, H.M. Shapiro. - In: JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM. - ISSN 0271-678X. - 60:4(1984), pp. 88-95.

Local cerebral blood flow with fentanyl-induced seizures.

C. Tommasino
Secondo
;
1984

Abstract

Local cerebral blood flow (LCBF) was evaluated with the [ 14 C]iodoantipyrine quantitative autoradiographic technique in 29 brain structures in conscious control rats and during fentanyl-induced electroencephalographic (EEG) spike and/or seizure activity and in the postseizure EEG suppression phase. During spike activity, LCBF increased in all structures; the increase reached statistical significance (p<0.05) in the superior colliculus, sensorimotor cortex, and pineal body (+130%, +187%, and +185% from control, respectively). With progressive development of seizure activity, LCBF significantly increased in 24 brain structures (range, +58% to +231% from control). During the postseizure EEG suppression phase, LCBF remained elevated in all structures (+80% to +390% from control). The local cerebrovascular resistance (LCVR) significantly decreased in 10 of 29 structures with the onset of spike activity (range, -24% to -64%), and remained decreased in all brain structures during seizure activity (range, -34% to -67%) and during the EEG suppression phase (range, -24% to 74%). This reduction of LCVR represents a near maximal state of cerebrovasodilation during fentanyl-induced EEG seizure or postseizure suppression activity. The global nature of the LCBF elevation indicates that factors other than local metabolic control are responsible for CBF regulation during local seizure activity
Settore MED/41 - Anestesiologia
1984
Article (author)
File in questo prodotto:
File Dimensione Formato  
1984 Fentanyl CBF rat.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 382.32 kB
Formato Adobe PDF
382.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/670366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact