Coronary artery disease is one of the leading causes of death worldwide. The stenotic coronary vessels are generally treated with coronary artery bypass grafts (CABGs), which can be either arterial (internal mammary artery, radial artery) or venous (saphenous vein). However, the different mechanical properties of the graft can influence the outcome of the procedure in terms of risk of restenosis and subsequent graft failure. In this paper, we perform a computational fluid–structure interaction (FSI) analysis of patient-specific multiple CABGs (Y-grafts) with the aim of better understanding the influence of the choice of bypass (arterial vs venous) on the risk of graft failure. Our results show that the use of a venous bypass results in a more disturbed flow field at the anastomosis and in higher stresses in the vessel wall with respect to the arterial one. This could explain the better long-term patency of the arterial bypasses experienced in the clinical practice.
A computational fluid–structure interaction analysis of coronary Y-grafts / B. Guerciotti, C. Vergara, S. Ippolito, A. Quarteroni, C. Antona, R. Scrofani. - In: MEDICAL ENGINEERING & PHYSICS. - ISSN 1350-4533. - 47(2017), pp. 117-127.
A computational fluid–structure interaction analysis of coronary Y-grafts
C. Vergara
;C. Antona;
2017
Abstract
Coronary artery disease is one of the leading causes of death worldwide. The stenotic coronary vessels are generally treated with coronary artery bypass grafts (CABGs), which can be either arterial (internal mammary artery, radial artery) or venous (saphenous vein). However, the different mechanical properties of the graft can influence the outcome of the procedure in terms of risk of restenosis and subsequent graft failure. In this paper, we perform a computational fluid–structure interaction (FSI) analysis of patient-specific multiple CABGs (Y-grafts) with the aim of better understanding the influence of the choice of bypass (arterial vs venous) on the risk of graft failure. Our results show that the use of a venous bypass results in a more disturbed flow field at the anastomosis and in higher stresses in the vessel wall with respect to the arterial one. This could explain the better long-term patency of the arterial bypasses experienced in the clinical practice.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
2.48 MB
Formato
Adobe PDF
|
2.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.