A theoretical investigation on the nature of the halogen bond through a valence-bond approach has been carried out with two main goals: (a) finding further confirmations of already existing explanations on the physical origins of the halogen bond and (b) possibly enriching the current models with new details. To achieve these goals we have exploited the spin-coupled method and we have performed computations on RBr⋯NH3 dimers characterized by a different electron withdrawing power of substituent R to the bromine atom. The analysis of typical spin-coupled descriptors (eg, shapes and overlaps of the spin-coupled orbitals, weights of the spin-coupled structures) in the different cases and in function of the distance between the monomers allowed us to draw qualitative conclusions about the formation and the strength of the halogen bonds. In particular, the investigation not only confirmed the validity of already existing models (ie, σ-hole and lump-hole models) but also highlighted interesting new features, such as the fact that the depletion of electron density around the bromine atom does not extend only toward the acceptor of the halogen bond, but also in the opposite direction (toward the substituent of the halogen), thus forming a sort of σ-tunnel, rather than a simple σ-hole.

A valence bond description of the bromine halogen bond / D. Franchini, A. Genoni, F. Dapiaggi, S. Pieraccini, M. Sironi. - In: INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY. - ISSN 0020-7608. - 119:15(2019 Aug 05). [10.1002/qua.25946]

A valence bond description of the bromine halogen bond

F. Dapiaggi;S. Pieraccini
Penultimo
;
M. Sironi
2019

Abstract

A theoretical investigation on the nature of the halogen bond through a valence-bond approach has been carried out with two main goals: (a) finding further confirmations of already existing explanations on the physical origins of the halogen bond and (b) possibly enriching the current models with new details. To achieve these goals we have exploited the spin-coupled method and we have performed computations on RBr⋯NH3 dimers characterized by a different electron withdrawing power of substituent R to the bromine atom. The analysis of typical spin-coupled descriptors (eg, shapes and overlaps of the spin-coupled orbitals, weights of the spin-coupled structures) in the different cases and in function of the distance between the monomers allowed us to draw qualitative conclusions about the formation and the strength of the halogen bonds. In particular, the investigation not only confirmed the validity of already existing models (ie, σ-hole and lump-hole models) but also highlighted interesting new features, such as the fact that the depletion of electron density around the bromine atom does not extend only toward the acceptor of the halogen bond, but also in the opposite direction (toward the substituent of the halogen), thus forming a sort of σ-tunnel, rather than a simple σ-hole.
halogen bond; spin-coupled; valence bond; σ-hole
Settore CHIM/02 - Chimica Fisica
5-ago-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
articolo_scxb.pdf

Open Access dal 02/08/2020

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri
Franchini_et_al-2019-International_Journal_of_Quantum_Chemistry.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.19 MB
Formato Adobe PDF
3.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/665301
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact