In a n-dimensional Friedmann-Robertson-Walker metric, it is rigorously shown that any analytical theory of gravity f(R,G), where R is the curvature scalar and G is the Gauss- Bonnet topological invariant, can be associated to a perfect-fluid stress-energy tensor. In this perspective, dark components of the cosmological Hubble flow can be geometrically interpreted.
Cosmological Perfect Fluids in Gauss-Bonnet Gravity / S. Capozziello, C.A. Mantica, L.G. Molinari. - In: INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS. - ISSN 0219-8878. - 16:9(2019 Sep 01), pp. 1950133.1950133-1-1950133.1950133-8.
Cosmological Perfect Fluids in Gauss-Bonnet Gravity
L.G. MolinariUltimo
2019
Abstract
In a n-dimensional Friedmann-Robertson-Walker metric, it is rigorously shown that any analytical theory of gravity f(R,G), where R is the curvature scalar and G is the Gauss- Bonnet topological invariant, can be associated to a perfect-fluid stress-energy tensor. In this perspective, dark components of the cosmological Hubble flow can be geometrically interpreted.File | Dimensione | Formato | |
---|---|---|---|
19) f(RG).pdf
Open Access dal 02/09/2020
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
137.67 kB
Formato
Adobe PDF
|
137.67 kB | Adobe PDF | Visualizza/Apri |
s0219887819501330.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
132.56 kB
Formato
Adobe PDF
|
132.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.