Process-based crop and grassland models estimating carbon (C) and nitrogen (N) dynamics are widely used to investigate best management practices in agriculture. They integrate several processes in a complex structure, but studies where modules corresponding to specific processes extracted from the whole model structure are assessed independently are uncommon. With the support of documented aerobic incubation trials in manure-amended soils, a sensitivity analysis was performed on the C–N cycling processes of four modules (MOD1–4), corresponding to the models APSIM, EPIC, FASSET and STICS. The results showed that the parameter ‘substrate use efficiency’ had the most effect on the predicted values of net CO2 emissions and net N mineralization, together with the C/N ratio of the soil microbial biomass. They explained 74–75% on average of both output variances, whereas parameters determining manure C and N partitioning and first-order decomposition constants of manure pools explained, on average, an additional 17–19%. Efforts should be focused on calibrating these parameters for more accurate simulations. The greater sensitivity of both outputs to parameters related to manure pools in more complex modules (MOD2–4) facilitates their adaptation to specific contexts, whereas MOD1 probably requires that parameters related to soil pools are also adapted to specific applications. Parameter interactions were limited, becoming noticeable only in situations of N-limited soil organic matter decomposition. Models MOD1 and MOD3 allowed the C/N ratio of the soil microbial biomass to vary temporarily; therefore, they were less sensitive to mineral N availability and more easily adapted to a wide range of situations. This study provides essential information to support the development of state-of-the-art biogeochemical models. Highlights: We compared four C–N modules embedded in process-based biogeochemical models. We used sensitivity analysis to assess the simulation of manure decomposition in soil. We identified a few parameters that influenced CO2 emissions and N mineralization. We found that substrate use efficiency explained most of the output variance for all models.

Sensitivity analysis of C and N modules in biogeochemical crop and grassland models following manure addition to soil / D. Cavalli, G. Bellocchi, M. Corti, P. Marino Gallina, L. Bechini. - In: EUROPEAN JOURNAL OF SOIL SCIENCE. - ISSN 1351-0754. - 70:4(2019 Jul), pp. 833-846. [10.1111/ejss.12793]

Sensitivity analysis of C and N modules in biogeochemical crop and grassland models following manure addition to soil

D. Cavalli
Primo
;
M. Corti;P. Marino Gallina
Penultimo
;
L. Bechini
Ultimo
2019

Abstract

Process-based crop and grassland models estimating carbon (C) and nitrogen (N) dynamics are widely used to investigate best management practices in agriculture. They integrate several processes in a complex structure, but studies where modules corresponding to specific processes extracted from the whole model structure are assessed independently are uncommon. With the support of documented aerobic incubation trials in manure-amended soils, a sensitivity analysis was performed on the C–N cycling processes of four modules (MOD1–4), corresponding to the models APSIM, EPIC, FASSET and STICS. The results showed that the parameter ‘substrate use efficiency’ had the most effect on the predicted values of net CO2 emissions and net N mineralization, together with the C/N ratio of the soil microbial biomass. They explained 74–75% on average of both output variances, whereas parameters determining manure C and N partitioning and first-order decomposition constants of manure pools explained, on average, an additional 17–19%. Efforts should be focused on calibrating these parameters for more accurate simulations. The greater sensitivity of both outputs to parameters related to manure pools in more complex modules (MOD2–4) facilitates their adaptation to specific contexts, whereas MOD1 probably requires that parameters related to soil pools are also adapted to specific applications. Parameter interactions were limited, becoming noticeable only in situations of N-limited soil organic matter decomposition. Models MOD1 and MOD3 allowed the C/N ratio of the soil microbial biomass to vary temporarily; therefore, they were less sensitive to mineral N availability and more easily adapted to a wide range of situations. This study provides essential information to support the development of state-of-the-art biogeochemical models. Highlights: We compared four C–N modules embedded in process-based biogeochemical models. We used sensitivity analysis to assess the simulation of manure decomposition in soil. We identified a few parameters that influenced CO2 emissions and N mineralization. We found that substrate use efficiency explained most of the output variance for all models.
animal slurry; CO2; emissions; N mineralization; parameter calibration; soil organic matter
Settore AGR/02 - Agronomia e Coltivazioni Erbacee
   C and N Models Intercomparison and Improvement to assess management options for GHG mitigation in agrosystems worldwide
   CN-MIP
   MINISTERO DELLE POLITICHE AGRICOLE ALIMENTARI, FORESTALI E DEL TURISMO
lug-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
ejss.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
EJSS-442-17.R2-final_CLEAN.pdf

Open Access dal 01/08/2020

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/664452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact