Mutations within PCSK9 (proprotein convertase subtilisin/kexin type 9) are associated with dominant forms of familial hyper- and hypocholesterolemia. Although PCSK9 controls low density lipoprotein (LDL) receptor (LDLR) levels post-transcriptionally, several questions concerning its mode of action remain unanswered. We show that purified PCSK9 protein added to the medium of human endothelial kidney 293, HepG2, and Chinese hamster ovary cell lines decreases cellular LDL uptake in a dose-dependent manner. Using this cell-based assay of PCSK9 activity, we found that the relative potencies of several PCSK9 missense mutants (S127R and D374Y, associated with hypercholesterolemia, and R46L, associated with hypocholesterolemia) correlate with LDL cholesterol levels in humans carrying such mutations. Notably, we found that in vitro wild-type PCSK9 binds LDLR with an ∼150-fold higher affinity at an acidic endosomal pH (KD = 4.19 nM) compared with a neutral pH (KD = 628 nM). We also demonstrate that wild-type PCSK9 and mutants S127R and R46L are internalized by cells to similar levels, whereas D374Y is more efficiently internalized, consistent with their affinities for LDLR at neutral pH. Finally, we show that LDL diminishes PCSK9 binding to LDLR in vitro and partially inhibits the effects of secreted PCSK9 on LDLR degradation in cell culture. Together, the results of our biochemical and cell-based experiments suggest a model in which secreted PCSK9 binds to LDLR and directs the trafficking of LDLR to the lysosomes for degradation.

Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation / T.S. Fisher, P.L. Surdo, S. Pandit, M. Mattu, J.C. Santoro, D. Wisniewski, R.T. Cummings, A. Calzetta, R.M. Cubbon, P.A. Fischer, A. Tarachandani, R. De Francesco, S.D. Wright, C.P. Sparrow, A. Carfi, A. Sitlani. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 282:28(2007), pp. 20502-20512.

Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation

R. De Francesco;
2007

Abstract

Mutations within PCSK9 (proprotein convertase subtilisin/kexin type 9) are associated with dominant forms of familial hyper- and hypocholesterolemia. Although PCSK9 controls low density lipoprotein (LDL) receptor (LDLR) levels post-transcriptionally, several questions concerning its mode of action remain unanswered. We show that purified PCSK9 protein added to the medium of human endothelial kidney 293, HepG2, and Chinese hamster ovary cell lines decreases cellular LDL uptake in a dose-dependent manner. Using this cell-based assay of PCSK9 activity, we found that the relative potencies of several PCSK9 missense mutants (S127R and D374Y, associated with hypercholesterolemia, and R46L, associated with hypocholesterolemia) correlate with LDL cholesterol levels in humans carrying such mutations. Notably, we found that in vitro wild-type PCSK9 binds LDLR with an ∼150-fold higher affinity at an acidic endosomal pH (KD = 4.19 nM) compared with a neutral pH (KD = 628 nM). We also demonstrate that wild-type PCSK9 and mutants S127R and R46L are internalized by cells to similar levels, whereas D374Y is more efficiently internalized, consistent with their affinities for LDLR at neutral pH. Finally, we show that LDL diminishes PCSK9 binding to LDLR in vitro and partially inhibits the effects of secreted PCSK9 on LDLR degradation in cell culture. Together, the results of our biochemical and cell-based experiments suggest a model in which secreted PCSK9 binds to LDLR and directs the trafficking of LDLR to the lysosomes for degradation.
Autosomal-dominant hypercholesterolemia; PCSK9 gene; familial hypercholesterolemia; molecular-interactions; human fibroblasts; adapter protein; protein; mutations; mice; cholesterol
Settore BIO/11 - Biologia Molecolare
Settore BIO/14 - Farmacologia
2007
Article (author)
File in questo prodotto:
File Dimensione Formato  
Fisher et al 2007.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 393.43 kB
Formato Adobe PDF
393.43 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/664408
Citazioni
  • ???jsp.display-item.citation.pmc??? 74
  • Scopus 164
  • ???jsp.display-item.citation.isi??? 160
social impact