Recently proposed injector accelerator, Low Energy Ring (LER) for the LHC and fast cycling accelerators for the proton drivers, SF-SPS at CERN and Dual Super-Ferric-Main Ring (DSF-MR) at Fermilab of neutrino sources require that a new magnet technology be developed. In support of this accelerator program, a pair of power leads needs to be developed to close the loop between the power supply and accelerator system. The magnet proposed to be used will be a modified transmission line magnet technology that would allow for accelerator quality magnetic field sweep of 2 T/s. The transmission line conductor will be using HTS technology and cooled with supercritical helium at 5 K. The power leads consist of two sections; upper one is a copper and lower section will be using HTS tapes. The accelerator magnet will be ramped to 100 kA in a second and almost immediately ramped down to zero in one second. This paper outlines the design considerations for the power leads to meet the operational requirements for the accelerator system. The power leads thermal analysis during the magnet powering cycle will be included.

Design considerations of a pair of power leads for fast-cycling superconducting accelerator magnets operating at 2 Tesla and 100 kA / Y. Huang, S. Hays, H. Piekarz, G. De Rijk, L. Rossi. - In: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. - ISSN 1051-8223. - 18:2(2008), pp. 4497934.1435-4497934.1438. ((Intervento presentato al 20. convegno International Conference on Magnet Technology tenutosi a Philadelphia nel 2007.

Design considerations of a pair of power leads for fast-cycling superconducting accelerator magnets operating at 2 Tesla and 100 kA

L. Rossi
2008

Abstract

Recently proposed injector accelerator, Low Energy Ring (LER) for the LHC and fast cycling accelerators for the proton drivers, SF-SPS at CERN and Dual Super-Ferric-Main Ring (DSF-MR) at Fermilab of neutrino sources require that a new magnet technology be developed. In support of this accelerator program, a pair of power leads needs to be developed to close the loop between the power supply and accelerator system. The magnet proposed to be used will be a modified transmission line magnet technology that would allow for accelerator quality magnetic field sweep of 2 T/s. The transmission line conductor will be using HTS technology and cooled with supercritical helium at 5 K. The power leads consist of two sections; upper one is a copper and lower section will be using HTS tapes. The accelerator magnet will be ramped to 100 kA in a second and almost immediately ramped down to zero in one second. This paper outlines the design considerations for the power leads to meet the operational requirements for the accelerator system. The power leads thermal analysis during the magnet powering cycle will be included.
AC losses; fast cycling accelerator; HTS superconductor; magnets; transmission line magnet
Settore FIS/01 - Fisica Sperimentale
2008
Article (author)
File in questo prodotto:
File Dimensione Formato  
04497934.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 340.33 kB
Formato Adobe PDF
340.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/664166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact