Let G be a finite group, and let cd(G) denote the set of degrees of the irreducible complex characters of G. The degree graph Δ(G) of G is defined as the simple undirected graph whose vertex set V(G) consists of the prime divisors of the numbers in cd(G), two distinct vertices p and q being adjacent if and only if pq divides some number in cd(G). In this note, we provide an upper bound on the size of V(G) in terms of the clique number ω(G) (i.e., the maximum size of a subset of V(G) inducing a complete subgraph) of Δ(G). Namely, we show that |V(G)|≤max2ω(G)+1,3ω(G)−4. Examples are given in order to show that the bound is best possible. This completes the analysis carried out in [1] where the solvable case was treated, extends the results in [3,4,9], and answers a question posed by the first author and H.P. Tong-Viet in [4].

Bounding the number of vertices in the degree graph of a finite group / Z. Akhlaghi, S. Dolfi, E. Pacifici, L. Sanus. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 224:2(2020 Feb), pp. 725-731. [10.1016/j.jpaa.2019.06.006]

Bounding the number of vertices in the degree graph of a finite group

E. Pacifici
Penultimo
;
2020

Abstract

Let G be a finite group, and let cd(G) denote the set of degrees of the irreducible complex characters of G. The degree graph Δ(G) of G is defined as the simple undirected graph whose vertex set V(G) consists of the prime divisors of the numbers in cd(G), two distinct vertices p and q being adjacent if and only if pq divides some number in cd(G). In this note, we provide an upper bound on the size of V(G) in terms of the clique number ω(G) (i.e., the maximum size of a subset of V(G) inducing a complete subgraph) of Δ(G). Namely, we show that |V(G)|≤max2ω(G)+1,3ω(G)−4. Examples are given in order to show that the bound is best possible. This completes the analysis carried out in [1] where the solvable case was treated, extends the results in [3,4,9], and answers a question posed by the first author and H.P. Tong-Viet in [4].
English
Settore MAT/02 - Algebra
Articolo
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
   Group theory and applications
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2015TW9LSR_006
feb-2020
2019
Elsevier
224
2
725
731
7
Pubblicato
Periodico con rilevanza internazionale
scopus
crossref
Aderisco
info:eu-repo/semantics/article
Bounding the number of vertices in the degree graph of a finite group / Z. Akhlaghi, S. Dolfi, E. Pacifici, L. Sanus. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 224:2(2020 Feb), pp. 725-731. [10.1016/j.jpaa.2019.06.006]
partially_open
Prodotti della ricerca::01 - Articolo su periodico
4
262
Article (author)
no
Z. Akhlaghi, S. Dolfi, E. Pacifici, L. Sanus
File in questo prodotto:
File Dimensione Formato  
2019CliqueNumber.pdf

Open Access dal 02/02/2021

Descrizione: Articolo principale
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 280.55 kB
Formato Adobe PDF
280.55 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022404919301525-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 300.8 kB
Formato Adobe PDF
300.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/660377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact