Very high electromagnetic forces are generated in the superconducting coils of high field accelerator magnets. The cables, which are used to wind the coils, can withstand limited pressure levels and strains generated during the powering without degradation. To protect the cables from mechanical damage, reliable prediction of strain and stress inside the coil is paramount for designing suitable support structure of the magnet. This is naturally done before a magnet is built and tested, which emphasizes the need for reliable modeling. Conventionally, the mechanics in superconducting coils are modeled assuming homogenized material properties inside a homogenized coil volume. Using this so-called coil block approach, predicting the actual cable strain or stress inside the homogenized volume is unreliable. In order to predict reliably the stress in the cable, more detailed representation of the modeling domain is needed. This paper presents a workflow to perform a detailed mechanical analysis using finite-element analysis following the envisioned and more detailed approach. As an example, a high field 20 T+ magnet with clover leaf ends is studied, and results are discussed. The results reveal considerable difference between the behavior of modeled homogenized coil blocks and coils where turns are individually considered.

3-D mechanical modeling of 20 T HTS clover leaf end coils : Good practices and lessons learned / J.S. Murtomaki, J. Van Nugteren, A. Stenvall, G. Kirby, L. Rossi. - In: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. - ISSN 1051-8223. - 29:5(2019 Aug), pp. 4004608.1-4004608.8.

3-D mechanical modeling of 20 T HTS clover leaf end coils : Good practices and lessons learned

L. Rossi
Penultimo
2019-08

Abstract

Very high electromagnetic forces are generated in the superconducting coils of high field accelerator magnets. The cables, which are used to wind the coils, can withstand limited pressure levels and strains generated during the powering without degradation. To protect the cables from mechanical damage, reliable prediction of strain and stress inside the coil is paramount for designing suitable support structure of the magnet. This is naturally done before a magnet is built and tested, which emphasizes the need for reliable modeling. Conventionally, the mechanics in superconducting coils are modeled assuming homogenized material properties inside a homogenized coil volume. Using this so-called coil block approach, predicting the actual cable strain or stress inside the homogenized volume is unreliable. In order to predict reliably the stress in the cable, more detailed representation of the modeling domain is needed. This paper presents a workflow to perform a detailed mechanical analysis using finite-element analysis following the envisioned and more detailed approach. As an example, a high field 20 T+ magnet with clover leaf ends is studied, and results are discussed. The results reveal considerable difference between the behavior of modeled homogenized coil blocks and coils where turns are individually considered.
Accelerator magnets: dipoles; computer aided engineering; correctors; finite element methods; HTS magnets; magnet structure; magnet supports; modeling; quadrupoles; simulation; stress; superconducting magnet mechanical factors
Settore FIS/01 - Fisica Sperimentale
Article (author)
File in questo prodotto:
File Dimensione Formato  
IEEE 4004608.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.99 MB
Formato Adobe PDF
3.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/660367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact