Conventional browsing of image collections use mechanisms such as thumbnails arranged on a regular grid or on a line,often mounted over a scrollable panel. However, this approach does not scale well with the size of the datasets (number of images).In this paper, we propose a new thumbnail-based interface to browse large collections of images. Our approach is based on weightedcentroidal anisotropic Voronoi diagrams. A dynamically changing subset of images is represented by thumbnails and shown on the screen. Thumbnails are shaped like general polygons, to better cover screen space, while still reflecting the original aspect ratios or orientation of the represented images. During the browsing process, thumbnails are dynamically rearranged, reshaped and rescaled. The objective is to devote more screen space (more numerous and larger thumbnails) to the parts of the dataset closer to the current region of interest, and progressively lesser away from it, while still making the dataset visible as a whole. During the entire process, temporal coherence is always maintained. GPU implementation easily guarantees the frame rates needed for fully smooth interactivity.
Browsing large image datasets through Voronoi diagrams / P. Brivio, M. Tarini, P. Cignoni. - In: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS. - ISSN 1077-2626. - 16:6(2010), pp. 5613466.1261-5613466.1270. ((Intervento presentato al convegno IEEE visualization conference / IEEE information visualization conference tenutosi a Salt Lake City nel 2010.
Browsing large image datasets through Voronoi diagrams
M. Tarini;
2010
Abstract
Conventional browsing of image collections use mechanisms such as thumbnails arranged on a regular grid or on a line,often mounted over a scrollable panel. However, this approach does not scale well with the size of the datasets (number of images).In this paper, we propose a new thumbnail-based interface to browse large collections of images. Our approach is based on weightedcentroidal anisotropic Voronoi diagrams. A dynamically changing subset of images is represented by thumbnails and shown on the screen. Thumbnails are shaped like general polygons, to better cover screen space, while still reflecting the original aspect ratios or orientation of the represented images. During the browsing process, thumbnails are dynamically rearranged, reshaped and rescaled. The objective is to devote more screen space (more numerous and larger thumbnails) to the parts of the dataset closer to the current region of interest, and progressively lesser away from it, while still making the dataset visible as a whole. During the entire process, temporal coherence is always maintained. GPU implementation easily guarantees the frame rates needed for fully smooth interactivity.File | Dimensione | Formato | |
---|---|---|---|
2010_voronoi_IEEE.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
Publisher's version/PDF
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.