Unverricht-Lundborg disease (EPM1), the most common progressive myoclonic epilepsy, is associated with a defect of cystatin B (CSTB), a protease inhibitor. We used CSTB knockout mice to test the hypothesis that EPM1 onset is related to a latent hyperexcitability and that progression depends on higher susceptibility to seizure-induced cell damage. Hippocampal slices prepared from CSTB-deficient mice were hyperexcitable, as they responded to afferent stimuli in CA1 with multiple population spikes and kainate perfusion provoked the appearance of epileptic-like activity earlier than in WT mice. This hyperexcitability may depend on loss of inhibition, because the density of GABA-immunoreactive cells was reduced in the hippocampus of CSTB knockouts. In vivo, CSTB-deficient mice treated with kainate displayed increased susceptibility to seizures, with shorter latency to seizure onset and increased seizure severity compared with WT littermates. Furthermore, a greater degree of neuronal damage was observed in CSTB-deficient than in WT mice after seizures of identical grade, indicating increased susceptibility to seizure-induced cell death.

A pathogenetic hypothesis of Unverricht-Lundborg disease onset and progression / S. Franceschetti, G. Sancini, A. Buzzi, S. Zucchini, B. Paradiso, G. Magnaghi, C. Frassoni, M. Chikhladze, G. Avanzini, M. Simonato. - In: NEUROBIOLOGY OF DISEASE. - ISSN 0969-9961. - 25:3(2007 Mar), pp. 675-685. [10.1016/j.nbd.2006.11.006]

A pathogenetic hypothesis of Unverricht-Lundborg disease onset and progression

M. Chikhladze;
2007

Abstract

Unverricht-Lundborg disease (EPM1), the most common progressive myoclonic epilepsy, is associated with a defect of cystatin B (CSTB), a protease inhibitor. We used CSTB knockout mice to test the hypothesis that EPM1 onset is related to a latent hyperexcitability and that progression depends on higher susceptibility to seizure-induced cell damage. Hippocampal slices prepared from CSTB-deficient mice were hyperexcitable, as they responded to afferent stimuli in CA1 with multiple population spikes and kainate perfusion provoked the appearance of epileptic-like activity earlier than in WT mice. This hyperexcitability may depend on loss of inhibition, because the density of GABA-immunoreactive cells was reduced in the hippocampus of CSTB knockouts. In vivo, CSTB-deficient mice treated with kainate displayed increased susceptibility to seizures, with shorter latency to seizure onset and increased seizure severity compared with WT littermates. Furthermore, a greater degree of neuronal damage was observed in CSTB-deficient than in WT mice after seizures of identical grade, indicating increased susceptibility to seizure-induced cell death.
Epilepsy; EPM1; Excitotoxicity; Microglia; Neurodegeneration
mar-2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/65998
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact