Breast cancer is one of the most common causes of mortality in women. Flavonoids, among other compounds, are bioactive constituents of propolis. In this comparative study, we investigated the effects of flavonoids apigenin (API), genistein (GEN), hesperidin (HES), naringin (NAR) and quercetin (QUE) on the proliferation, apoptosis, and cell cycle of two different human cancer cells - MDA-MB-231, estrogen-negative, and MCF-7, estrogen-positive receptor breast carcinoma cells. Many cytotoxic reports of flavonoids were performed by MTT assay. However, it's reported that MTT is reduced in metabolically active cells and yields an insoluble purple formazan, which indicates that obtained cytotoxic results of flavonoids could be inconsistent. Cell viability was measured by NR, neutral red assay, while the percentage of apoptotic cells and cell cycle arrest were determined by flow cytometry and Muse cell cycle assay, respectively. The results showed a high dose-dependent effect in cell viability tests. IC50 values were as follows (MCF-7/MDA-MB-231, for 48 h, in μM): 9.39/50.83 for HES, 25.19/88.17 for API, 40.26/333.51 for NAR, 49.49/47.50 for GEN and 95.12/130.10 for QUE. Flavonoid-induced apoptosis was dose- and time-dependent, for both cancer cell lines, though flavonoids were more active on MCF-7 cells. The flavonoids also induced cell cycle arrest in cancer cells.

Flavonoids, bioactive components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells MDA-MB-231 and MCF-7 : A comparative study / A. Kabala-Dzik, A. Rzepecka-Stojko, R. Kubina, M. Iriti, R.D. Wojtyczka, E. Buszman, J. Stojko. - In: CELLULAR AND MOLECULAR BIOLOGY. - ISSN 0145-5680. - 64:8(2018), pp. 1-10. [10.14715/cmb/2018.64.8.1]

Flavonoids, bioactive components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells MDA-MB-231 and MCF-7 : A comparative study

M. Iriti;
2018

Abstract

Breast cancer is one of the most common causes of mortality in women. Flavonoids, among other compounds, are bioactive constituents of propolis. In this comparative study, we investigated the effects of flavonoids apigenin (API), genistein (GEN), hesperidin (HES), naringin (NAR) and quercetin (QUE) on the proliferation, apoptosis, and cell cycle of two different human cancer cells - MDA-MB-231, estrogen-negative, and MCF-7, estrogen-positive receptor breast carcinoma cells. Many cytotoxic reports of flavonoids were performed by MTT assay. However, it's reported that MTT is reduced in metabolically active cells and yields an insoluble purple formazan, which indicates that obtained cytotoxic results of flavonoids could be inconsistent. Cell viability was measured by NR, neutral red assay, while the percentage of apoptotic cells and cell cycle arrest were determined by flow cytometry and Muse cell cycle assay, respectively. The results showed a high dose-dependent effect in cell viability tests. IC50 values were as follows (MCF-7/MDA-MB-231, for 48 h, in μM): 9.39/50.83 for HES, 25.19/88.17 for API, 40.26/333.51 for NAR, 49.49/47.50 for GEN and 95.12/130.10 for QUE. Flavonoid-induced apoptosis was dose- and time-dependent, for both cancer cell lines, though flavonoids were more active on MCF-7 cells. The flavonoids also induced cell cycle arrest in cancer cells.
Breast cancer; Flavonoids; Propolis
Settore AGR/12 - Patologia Vegetale
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
1938-5092-1-PB.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/659493
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 62
social impact