We study avalanches in a model for a planar crack propagating in a disordered medium. Due to long-range interactions, avalanches are formed by a set of spatially disconnected local clusters, the sizes of which are distributed according to a power law with an exponent τa =1.5. We derive a scaling relation τa =2τ-1 between the local cluster exponent τa and the global avalanche exponent τ. For length scales longer than a crossover length proportional to the Larkin length, the aspect ratio of the local clusters scales with the roughness exponent of the line model. Our analysis provides an explanation for experimental results on planar crack avalanches in Plexiglas plates, but the results are applicable also to other systems with long-range interactions

Avalanches and clusters in planar crack front propagation / L. Laurson, S. Santucci, S. Zapperi. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 81:4(2010 Apr 27), pp. 046116.1-046116.6. [10.1103/PhysRevE.81.046116]

Avalanches and clusters in planar crack front propagation

S. Zapperi
2010

Abstract

We study avalanches in a model for a planar crack propagating in a disordered medium. Due to long-range interactions, avalanches are formed by a set of spatially disconnected local clusters, the sizes of which are distributed according to a power law with an exponent τa =1.5. We derive a scaling relation τa =2τ-1 between the local cluster exponent τa and the global avalanche exponent τ. For length scales longer than a crossover length proportional to the Larkin length, the aspect ratio of the local clusters scales with the roughness exponent of the line model. Our analysis provides an explanation for experimental results on planar crack avalanches in Plexiglas plates, but the results are applicable also to other systems with long-range interactions
superconductors; dynamics
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/03 - Fisica della Materia
27-apr-2010
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevE.81.046116.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 284.02 kB
Formato Adobe PDF
284.02 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/658232
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 83
social impact