In this paper we analyze the downward random motion of a particle in a vertical, bounded, Sierpinski gasket G, where at each layer either absorption or delays are considered. In the case of motion with absorption the explicit distribution of the position of the descending particle in the pre-gasket G n is obtained and the limiting case of the Sierpinski gasket discussed. For the delayed downward motion we derive a representation of the random time needed to arrive at the base of G n in terms of independent binomial random variables (containing the contribution of delays at different layers with different geometrical structures).

A grain of dust falling through a sierpinski gasket / S. Leorato, E. Orsingher. - In: ACTA MATHEMATICA SINICA. - ISSN 1439-8516. - 23:6(2007), pp. 1095-1108.

A grain of dust falling through a sierpinski gasket

S. Leorato;
2007

Abstract

In this paper we analyze the downward random motion of a particle in a vertical, bounded, Sierpinski gasket G, where at each layer either absorption or delays are considered. In the case of motion with absorption the explicit distribution of the position of the descending particle in the pre-gasket G n is obtained and the limiting case of the Sierpinski gasket discussed. For the delayed downward motion we derive a representation of the random time needed to arrive at the base of G n in terms of independent binomial random variables (containing the contribution of delays at different layers with different geometrical structures).
Binomial random variables; Fractals; Hausdorff dimension; Random walks; Self-similarity
Settore MAT/06 - Probabilita' e Statistica Matematica
2007
Article (author)
File in questo prodotto:
File Dimensione Formato  
paper_on_line.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 217.15 kB
Formato Adobe PDF
217.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/657988
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact