A procedure for efficient estimation of the trimmed mean of a random variable conditional on a set of covariates is proposed. For concreteness, the focus is on a financial application where the trimmed mean of interest corresponds to the conditional expected shortfall, which is known to be a coherent risk measure. The proposed class of estimators is based on representing the estimator as an integral of the conditional quantile function. Relative to the simple analog estimator that weights all conditional quantiles equally, asymptotic efficiency gains may be attained by giving different weights to the different conditional quantiles while penalizing excessive departures from uniform weighting. The approach presented here allows for either parametric or nonparametric modeling of the conditional quantiles and the weights, but is essentially nonparametric in spirit. The asymptotic properties of the proposed class of estimators are established. Their finite sample properties are illustrated through a set of Monte Carlo experiments and an empirical application1.
Asymptotically efficient estimation of the conditional expected shortfall / S. Leorato, F. Peracchi, A.V. Tanase. - In: COMPUTATIONAL STATISTICS & DATA ANALYSIS. - ISSN 0167-9473. - 56:4(2012), pp. 768-784.
Asymptotically efficient estimation of the conditional expected shortfall
S. Leorato
;
2012
Abstract
A procedure for efficient estimation of the trimmed mean of a random variable conditional on a set of covariates is proposed. For concreteness, the focus is on a financial application where the trimmed mean of interest corresponds to the conditional expected shortfall, which is known to be a coherent risk measure. The proposed class of estimators is based on representing the estimator as an integral of the conditional quantile function. Relative to the simple analog estimator that weights all conditional quantiles equally, asymptotic efficiency gains may be attained by giving different weights to the different conditional quantiles while penalizing excessive departures from uniform weighting. The approach presented here allows for either parametric or nonparametric modeling of the conditional quantiles and the weights, but is essentially nonparametric in spirit. The asymptotic properties of the proposed class of estimators are established. Their finite sample properties are illustrated through a set of Monte Carlo experiments and an empirical application1.File | Dimensione | Formato | |
---|---|---|---|
CSDA4950.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.