We introduce a simple model to describe the frictional properties of granular media under shear. We model the friction force in terms of the horizontal velocity cursive Greek chi̇ and the vertical position z of the slider, interpreting 2 as a constitutive variable characterizing the contact. Dilatancy is shown to play an essential role in the dynamics, inducing a stick-slip instability at low velocity. We compute the phase diagram, analyze numerically the model for a wide range of parameters and compare our results with experiments on dry and wet granular media, obtaining a good agreement. In particular, we reproduce the hysteretic velocity dependence of the frictional force

Dilatancy and friction in sheared granular media / F. Lacombe, S. Zapperi, H.J. Herrmann. - In: THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER. - ISSN 1292-8941. - 2:2(2000 Jun), pp. 181-189.

Dilatancy and friction in sheared granular media

S. Zapperi;
2000

Abstract

We introduce a simple model to describe the frictional properties of granular media under shear. We model the friction force in terms of the horizontal velocity cursive Greek chi̇ and the vertical position z of the slider, interpreting 2 as a constitutive variable characterizing the contact. Dilatancy is shown to play an essential role in the dynamics, inducing a stick-slip instability at low velocity. We compute the phase diagram, analyze numerically the model for a wide range of parameters and compare our results with experiments on dry and wet granular media, obtaining a good agreement. In particular, we reproduce the hysteretic velocity dependence of the frictional force
Stick-slip; dependent friction; couette experiment; transition; instability; mechanics; stability; layers; fault
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/03 - Fisica della Materia
giu-2000
Article (author)
File in questo prodotto:
File Dimensione Formato  
Lacombe2000_Article_DilatancyAndFrictionInShearedG.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 294.4 kB
Formato Adobe PDF
294.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/657308
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 22
social impact