Objective: C1 inhibitor (C1-INH) is an endogenous inhibitor of complement and kinin systems. We have explored the efficacy and the therapeutic window of the recently available human recombinant (rh) C1-INH on ischemic brain injury and investigated its mechanism of action in comparison with that of plasma-derived (pd) C1-INH. Methods: rhC1-INH was administered intravenously to C57B1/6 mice undergoing transient or permanent ischemia, and its protective effects were evaluated by measuring infarct volume and neurodegeneration. The binding profiles of rhC1-INH and pdC1-INH were assessed in vitro using surface plasmon resonance. Their localization in the ischemic brain tissue was determined by. immunohistochemistry and confocal analysis. The functional consequences of rhC1-INH and pdC1-INH administration on complement activation were analyzed by enzyme-linked immunosorbent assay on plasma samples. Results: rhC1-INH markedly reduced cerebral damage when administered up to 18 hours after transient ischemia and up to 6 hours after permanent ischemia, thus showing a surprisingly wide therapeutic window. In vitro rhC1-INH bound mannose-binding lectin (MBL), a key protein in the lectin complement pathway, with high affinity, whereas pdC1-INH, which has a different glycosylation pattern, did not. In the ischemic brain, rhC1-INH was confined to cerebral vessels, where it colocalized with MBL, whereas pdC1-INH diffused into the brain parenchyma. In addition, rhC1-INH was more active than pdC1-INH in inhibiting MBL-induced complement activation. Interpretation: rhC1-INH showed a surprisingly wider time window of efficacy compared with the corresponding plasmatic protein. We propose that the superiority of rhC1-INH is due to its selective binding to MBL, which emerged as a novel target for stroke treatment.

Recombinant C1 Inhibitor in Brain Ischemic Injury / R. Gesuete, C. Storini, A. Fantin, M. Stravalaci, E. Zanier, F. Orsini, H. Vietsch, M. Mannesse, B. Ziere, M. Gobbi, M. De Simoni. - In: ANNALS OF NEUROLOGY. - ISSN 0364-5134. - 66:3(2009), pp. 332-342.

Recombinant C1 Inhibitor in Brain Ischemic Injury

A. Fantin;
2009

Abstract

Objective: C1 inhibitor (C1-INH) is an endogenous inhibitor of complement and kinin systems. We have explored the efficacy and the therapeutic window of the recently available human recombinant (rh) C1-INH on ischemic brain injury and investigated its mechanism of action in comparison with that of plasma-derived (pd) C1-INH. Methods: rhC1-INH was administered intravenously to C57B1/6 mice undergoing transient or permanent ischemia, and its protective effects were evaluated by measuring infarct volume and neurodegeneration. The binding profiles of rhC1-INH and pdC1-INH were assessed in vitro using surface plasmon resonance. Their localization in the ischemic brain tissue was determined by. immunohistochemistry and confocal analysis. The functional consequences of rhC1-INH and pdC1-INH administration on complement activation were analyzed by enzyme-linked immunosorbent assay on plasma samples. Results: rhC1-INH markedly reduced cerebral damage when administered up to 18 hours after transient ischemia and up to 6 hours after permanent ischemia, thus showing a surprisingly wide therapeutic window. In vitro rhC1-INH bound mannose-binding lectin (MBL), a key protein in the lectin complement pathway, with high affinity, whereas pdC1-INH, which has a different glycosylation pattern, did not. In the ischemic brain, rhC1-INH was confined to cerebral vessels, where it colocalized with MBL, whereas pdC1-INH diffused into the brain parenchyma. In addition, rhC1-INH was more active than pdC1-INH in inhibiting MBL-induced complement activation. Interpretation: rhC1-INH showed a surprisingly wider time window of efficacy compared with the corresponding plasmatic protein. We propose that the superiority of rhC1-INH is due to its selective binding to MBL, which emerged as a novel target for stroke treatment.
Settore BIO/06 - Anatomia Comparata e Citologia
Settore BIO/09 - Fisiologia
Settore BIO/10 - Biochimica
Settore BIO/13 - Biologia Applicata
Settore BIO/17 - Istologia
Settore MED/04 - Patologia Generale
2009
Article (author)
File in questo prodotto:
File Dimensione Formato  
Gesuete_et_al-2009-Annals_of_Neurology.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/656761
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 114
  • ???jsp.display-item.citation.isi??? 105
social impact