Suitably designed nano-heterojunctions are able to enhance synergistic functionalities of different materials yielding to “brave new systems” with innovative and sometimes unexpected physicochemical properties [1]. However, the complete understanding of these devices has to be deeply studied. In this work, a concerted theoretical and electrochemical investigation is proposed to gain insights into a metal-semiconductor interface, namely that created by the silver/anatase hybrid nanocomposite, a promising material for advanced sensing applications [2]. In particular, it provided the first photorenewable and anti-fouling sensor device, enhancing the analytical limits in terms of accuracy, sensitivity, detection limits, and photoactivity [3]. Furthermore, the hybrid material is proven to be extremely robust against aging, showing complete regeneration, also after one-year storage. The electrochemical/electroanalytical virtues of the Ag/TiO2 junction were evaluated in terms of current densities and reproducibility, providing their explanation at the atomic-scale level and demonstrating how and why the final device can act as silver-cation positive electrode [4]. Moreover, Cyclic Voltammetry and Electrochemical Impedance Spectroscopy were used in combination with periodic plane-wave DFT calculations, giving comparable qualitative but also quantitative results. In particular, we theoretically estimated the overall amount of electron transfer toward the semiconductor side of the interface at equilibrium and suitably designed electrochemical experiments, which strictly agree with the theoretical charge transfer estimates. Moreover, photoelectrochemical measurements and theoretical predictions show the unique permanent charge separation occurring in the device [4]. [1] A.V. Emeline, V.N. Kuznetsov, V.K. Ryabchuk, N. Serpone, Environ. Sci. Pollut. Res., 2012, 19, 3666–3675. [2] G. Soliveri, V. Pifferi, G. Panzarasa, S. Ardizzone, G. Cappelletti, D. Meroni, K. Sparnacci, L. Falciola, Analyst, 2015, 140, 1486–1494. [3] V. Pifferi, G. Soliveri, G. Panzarasa, G. Cappelletti, D. Meroni, L. Falciola, Anal. Bioanal. Chem., 2016, 408, 7339–7349. [4] G. Di Liberto, V. Pifferi, L. Lo Presti, M. Ceotto, L. Falciola, J. Phys. Chem. Lett., 2017, 8, 5372–5377.

A Concerted Electrochemical and Theoretical Investigation of the Ag/TiO2 nano-heterojunction / L. Falciola, V. Pifferi, G. Di Liberto, L. Lo Presti, M. Ceotto. ((Intervento presentato al convegno International Workshop on Electrochemistry of Electroactive Materials tenutosi a Borovets nel 2019.

A Concerted Electrochemical and Theoretical Investigation of the Ag/TiO2 nano-heterojunction

L. Falciola
Primo
;
V. Pifferi
Secondo
;
G. Di Liberto;L. Lo Presti;M. Ceotto
2019

Abstract

Suitably designed nano-heterojunctions are able to enhance synergistic functionalities of different materials yielding to “brave new systems” with innovative and sometimes unexpected physicochemical properties [1]. However, the complete understanding of these devices has to be deeply studied. In this work, a concerted theoretical and electrochemical investigation is proposed to gain insights into a metal-semiconductor interface, namely that created by the silver/anatase hybrid nanocomposite, a promising material for advanced sensing applications [2]. In particular, it provided the first photorenewable and anti-fouling sensor device, enhancing the analytical limits in terms of accuracy, sensitivity, detection limits, and photoactivity [3]. Furthermore, the hybrid material is proven to be extremely robust against aging, showing complete regeneration, also after one-year storage. The electrochemical/electroanalytical virtues of the Ag/TiO2 junction were evaluated in terms of current densities and reproducibility, providing their explanation at the atomic-scale level and demonstrating how and why the final device can act as silver-cation positive electrode [4]. Moreover, Cyclic Voltammetry and Electrochemical Impedance Spectroscopy were used in combination with periodic plane-wave DFT calculations, giving comparable qualitative but also quantitative results. In particular, we theoretically estimated the overall amount of electron transfer toward the semiconductor side of the interface at equilibrium and suitably designed electrochemical experiments, which strictly agree with the theoretical charge transfer estimates. Moreover, photoelectrochemical measurements and theoretical predictions show the unique permanent charge separation occurring in the device [4]. [1] A.V. Emeline, V.N. Kuznetsov, V.K. Ryabchuk, N. Serpone, Environ. Sci. Pollut. Res., 2012, 19, 3666–3675. [2] G. Soliveri, V. Pifferi, G. Panzarasa, S. Ardizzone, G. Cappelletti, D. Meroni, K. Sparnacci, L. Falciola, Analyst, 2015, 140, 1486–1494. [3] V. Pifferi, G. Soliveri, G. Panzarasa, G. Cappelletti, D. Meroni, L. Falciola, Anal. Bioanal. Chem., 2016, 408, 7339–7349. [4] G. Di Liberto, V. Pifferi, L. Lo Presti, M. Ceotto, L. Falciola, J. Phys. Chem. Lett., 2017, 8, 5372–5377.
giu-2019
Settore CHIM/01 - Chimica Analitica
Settore CHIM/02 - Chimica Fisica
Institute of Physical Chemistry (IPC)
Bulgarian Academy of Sciences
A Concerted Electrochemical and Theoretical Investigation of the Ag/TiO2 nano-heterojunction / L. Falciola, V. Pifferi, G. Di Liberto, L. Lo Presti, M. Ceotto. ((Intervento presentato al convegno International Workshop on Electrochemistry of Electroactive Materials tenutosi a Borovets nel 2019.
Conference Object
File in questo prodotto:
File Dimensione Formato  
Falciola2_POSTER.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 507.48 kB
Formato Adobe PDF
507.48 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/655797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact