The viscoplastic deformation (creep) of crystalline materials under constant stress involves the motion of a large number of interacting dislocations1. Analytical methods and sophisticated ‘dislocation dynamics’ simulations have proved very effective in the study of dislocation patterning, and have led to macroscopic constitutive laws of plastic deformation2,3,4,5,6,7,8,9. Yet, a statistical analysis of the dynamics of an assembly of interacting dislocations has not hitherto been performed. Here we report acoustic emission measurements on stressed ice single crystals, the results of which indicate that dislocations move in a scale-free intermittent fashion. This result is confirmed by numerical simulations of a model of interacting dislocations that successfully reproduces the main features of the experiment. We find that dislocations generate a slowly evolving configuration landscape which coexists with rapid collective rearrangements. These rearrangements involve a comparatively small fraction of the dislocations and lead to an intermittent behaviour of the net plastic response. This basic dynamical picture appears to be a generic feature in the deformation of many other materials10,11,12. Moreover, it should provide a framework for discussing fundamental aspects of plasticity that goes beyond standard mean-field approaches that see plastic deformation as a smooth laminar flow

Intermittent dislocation flow in viscoplastic deformation / M. -Carmen Miguel, A. Vespignani, S. Zapperi, J. Weiss, J. Grasso. - In: NATURE. - ISSN 0028-0836. - 410:6829(2001), pp. 667-671.

Intermittent dislocation flow in viscoplastic deformation

S. Zapperi;
2001

Abstract

The viscoplastic deformation (creep) of crystalline materials under constant stress involves the motion of a large number of interacting dislocations1. Analytical methods and sophisticated ‘dislocation dynamics’ simulations have proved very effective in the study of dislocation patterning, and have led to macroscopic constitutive laws of plastic deformation2,3,4,5,6,7,8,9. Yet, a statistical analysis of the dynamics of an assembly of interacting dislocations has not hitherto been performed. Here we report acoustic emission measurements on stressed ice single crystals, the results of which indicate that dislocations move in a scale-free intermittent fashion. This result is confirmed by numerical simulations of a model of interacting dislocations that successfully reproduces the main features of the experiment. We find that dislocations generate a slowly evolving configuration landscape which coexists with rapid collective rearrangements. These rearrangements involve a comparatively small fraction of the dislocations and lead to an intermittent behaviour of the net plastic response. This basic dynamical picture appears to be a generic feature in the deformation of many other materials10,11,12. Moreover, it should provide a framework for discussing fundamental aspects of plasticity that goes beyond standard mean-field approaches that see plastic deformation as a smooth laminar flow
Acoustic-emission; single-crystals; dynamics; simulation; patterns; lines; ice
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/03 - Fisica della Materia
2001
Article (author)
File in questo prodotto:
File Dimensione Formato  
35070524.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 487.68 kB
Formato Adobe PDF
487.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/655621
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 469
  • ???jsp.display-item.citation.isi??? 437
social impact