8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) is one of the major DNA modifications and a potent pre-mutagenic lesion prone to mispair with 2′-deoxyadenosine (dA). Several thousand residues of 8-oxodG are constitutively generated in the genome of mammalian cells, but their genomic distribution has not yet been fully characterized. Here, by using OxiDIP-Seq, a highly sensitive methodology that uses immuno-precipitation with efficient anti-8-oxodG antibodies combined with high-throughput sequencing, we report the genome-wide distribution of 8-oxodG in human non-tumorigenic epithelial breast cells (MCF10A), and mouse embryonic fibroblasts (MEFs). OxiDIP-Seq revealed sites of 8-oxodG accumulation overlapping with Î 3H2AX ChIP-Seq signals within the gene body of transcribed long genes, particularly at the DNA replication origins contained therein. We propose that the presence of persistent single-stranded DNA, as a consequence of transcription-replication clashes at these sites, determines local vulnerability to DNA oxidation and/or its slow repair. This oxidatively-generated damage, likely in combination with other kinds of lesion, might contribute to the formation of DNA double strand breaks and activation of DNA damage response.

Genome-wide mapping of 8-oxo-7,8-dihydro-2′-deoxyguanosine reveals accumulation of oxidatively-generated damage at DNA replication origins within transcribed long genes of mammalian cells / S. Amente, G. Di Palo, G. Scala, T. Castrignano, F. Gorini, S. Cocozza, A. Moresano, P. Pucci, B. Ma, I. Stepanov, L. Lania, P.G. Pelicci, G.I. Dellino, B. Majello. - In: NUCLEIC ACIDS RESEARCH. - ISSN 0305-1048. - 47:1(2019 Jan), pp. 221-236. [10.1093/nar/gky1152]

Genome-wide mapping of 8-oxo-7,8-dihydro-2′-deoxyguanosine reveals accumulation of oxidatively-generated damage at DNA replication origins within transcribed long genes of mammalian cells

P.G. Pelicci;G.I. Dellino
Penultimo
;
2019

Abstract

8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) is one of the major DNA modifications and a potent pre-mutagenic lesion prone to mispair with 2′-deoxyadenosine (dA). Several thousand residues of 8-oxodG are constitutively generated in the genome of mammalian cells, but their genomic distribution has not yet been fully characterized. Here, by using OxiDIP-Seq, a highly sensitive methodology that uses immuno-precipitation with efficient anti-8-oxodG antibodies combined with high-throughput sequencing, we report the genome-wide distribution of 8-oxodG in human non-tumorigenic epithelial breast cells (MCF10A), and mouse embryonic fibroblasts (MEFs). OxiDIP-Seq revealed sites of 8-oxodG accumulation overlapping with Î 3H2AX ChIP-Seq signals within the gene body of transcribed long genes, particularly at the DNA replication origins contained therein. We propose that the presence of persistent single-stranded DNA, as a consequence of transcription-replication clashes at these sites, determines local vulnerability to DNA oxidation and/or its slow repair. This oxidatively-generated damage, likely in combination with other kinds of lesion, might contribute to the formation of DNA double strand breaks and activation of DNA damage response.
Settore MED/04 - Patologia Generale
Settore BIO/13 - Biologia Applicata
Settore BIO/11 - Biologia Molecolare
gen-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
gky1152.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/654663
Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 67
social impact