Aspect-oriented concepts are currently exploited to model systems from the beginning of their development. Aspects capture potentially crosscutting concerns and make it easier to formulate desirable properties and to understand analysis results than in a tangled system. However, the complexity of interactions among different aspectualized entities may reduce the benefit of aspect-oriented separation of crosscutting concerns. Some interactions may be intended or may be emerging behavior, while others are the source of unexpected inconsistencies. It is therefore desirable to detect inconsistencies as early as possible, preferably at the modeling level. We propose an approach for analyzing interactions and potential inconsistencies at the level of requirements modeling. We use a variant of UML to model requirements in a use case driven approach. Activities that are used to refine use cases are the joinpoints to compose crosscutting concerns. The activities and their composition are formalized using the theory of graph transformation systems, which provides analysis support for detecting potential conflicts and dependencies between rule-based transformations. This theory is used to effectively reason about potential interactions and inconsistencies caused by aspect-oriented composition. The analysis is performed with the graph transformation tool AGG in order to get a better understanding of the potential behavior of the composed system. In addition, the activity control flow of the aspect/base specification and the composition operators are taken into account to identify the relevant interactions.

Analysis of Aspect-Oriented Model Weaving / K. Mehner, M. Monga, G. Täntzer - In: Transactions on Aspect-Oriented Software Development V / [a cura di] A. Rashid, H. Ossher. - Berlin : Springer, 2009. - ISBN 9783642020582. - pp. 235-263 [10.1007/978-3-642-02059-9_7]

Analysis of Aspect-Oriented Model Weaving

M. Monga
Secondo
;
2009

Abstract

Aspect-oriented concepts are currently exploited to model systems from the beginning of their development. Aspects capture potentially crosscutting concerns and make it easier to formulate desirable properties and to understand analysis results than in a tangled system. However, the complexity of interactions among different aspectualized entities may reduce the benefit of aspect-oriented separation of crosscutting concerns. Some interactions may be intended or may be emerging behavior, while others are the source of unexpected inconsistencies. It is therefore desirable to detect inconsistencies as early as possible, preferably at the modeling level. We propose an approach for analyzing interactions and potential inconsistencies at the level of requirements modeling. We use a variant of UML to model requirements in a use case driven approach. Activities that are used to refine use cases are the joinpoints to compose crosscutting concerns. The activities and their composition are formalized using the theory of graph transformation systems, which provides analysis support for detecting potential conflicts and dependencies between rule-based transformations. This theory is used to effectively reason about potential interactions and inconsistencies caused by aspect-oriented composition. The analysis is performed with the graph transformation tool AGG in order to get a better understanding of the potential behavior of the composed system. In addition, the activity control flow of the aspect/base specification and the composition operators are taken into account to identify the relevant interactions.
Settore INF/01 - Informatica
2009
http://www.springerlink.com/content/v8u6681651902834
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/65432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 7
social impact