Objective: Nonalcoholic fatty liver disease (NAFLD) is becoming a leading cause of advanced chronic liver disease. The progression of NAFLD, including nonalcoholic steatohepatitis (NASH), has a strong genetic component, and the most robust contributor is the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 encoding the 148M protein sequence variant. We hypothesized that suppressing the expression of the PNPLA3 148M mutant protein would exert a beneficial effect on the entire spectrum of NAFLD. Methods: We examined the effects of liver-targeted GalNAc 3 -conjugated antisense oligonucleotide (ASO)-mediated silencing of Pnpla3 in a knock-in mouse model in which we introduced the human PNPLA3 I148M mutation. Results: ASO-mediated silencing of Pnpla3 reduced liver steatosis (p = 0.038) in homozygous Pnpla3 148M/M knock-in mutant mice but not in wild-type littermates fed a steatogenic high-sucrose diet. In mice fed a NASH-inducing diet, ASO-mediated silencing of Pnpla3 reduced liver steatosis score and NAFLD activity score independent of the Pnpla3 genotype, while reductions in liver inflammation score (p = 0.018) and fibrosis stage (p = 0.031) were observed only in the Pnpla3 knock-in 148M/M mutant mice. These responses were accompanied by reduced liver levels of Mcp1 (p = 0.026) and Timp2 (p = 0.007) specifically in the mutant knock-in mice. This may reduce levels of chemokine attracting inflammatory cells and increase the collagenolytic activity during tissue regeneration. Conclusion: This study provides the first evidence that a Pnpla3 ASO therapy can improve all features of NAFLD, including liver fibrosis, and suppress the expression of a strong innate genetic risk factor, Pnpla3 148M, which may open up a precision medicine approach in NASH.
Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice / D. Linden, A. Ahnmark, P. Pingitore, E. Ciociola, I. Ahlstedt, A.-. Andreasson, K. Sasidharan, K. Madeyski-Bengtson, M. Zurek, R.M. Mancina, A. Lindblom, M. Bjursell, G. Bottcher, M. Stahlman, M. Bohlooly-Y, W.G. Haynes, B. Carlsson, M. Graham, R. Lee, S. Murray, L. Valenti, S. Bhanot, P. Akerblad, S. Romeo. - In: MOLECULAR METABOLISM. - ISSN 2212-8778. - 22(2019 Apr), pp. 49-61. [10.1016/j.molmet.2019.01.013]
Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice
L. Valenti;
2019
Abstract
Objective: Nonalcoholic fatty liver disease (NAFLD) is becoming a leading cause of advanced chronic liver disease. The progression of NAFLD, including nonalcoholic steatohepatitis (NASH), has a strong genetic component, and the most robust contributor is the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 encoding the 148M protein sequence variant. We hypothesized that suppressing the expression of the PNPLA3 148M mutant protein would exert a beneficial effect on the entire spectrum of NAFLD. Methods: We examined the effects of liver-targeted GalNAc 3 -conjugated antisense oligonucleotide (ASO)-mediated silencing of Pnpla3 in a knock-in mouse model in which we introduced the human PNPLA3 I148M mutation. Results: ASO-mediated silencing of Pnpla3 reduced liver steatosis (p = 0.038) in homozygous Pnpla3 148M/M knock-in mutant mice but not in wild-type littermates fed a steatogenic high-sucrose diet. In mice fed a NASH-inducing diet, ASO-mediated silencing of Pnpla3 reduced liver steatosis score and NAFLD activity score independent of the Pnpla3 genotype, while reductions in liver inflammation score (p = 0.018) and fibrosis stage (p = 0.031) were observed only in the Pnpla3 knock-in 148M/M mutant mice. These responses were accompanied by reduced liver levels of Mcp1 (p = 0.026) and Timp2 (p = 0.007) specifically in the mutant knock-in mice. This may reduce levels of chemokine attracting inflammatory cells and increase the collagenolytic activity during tissue regeneration. Conclusion: This study provides the first evidence that a Pnpla3 ASO therapy can improve all features of NAFLD, including liver fibrosis, and suppress the expression of a strong innate genetic risk factor, Pnpla3 148M, which may open up a precision medicine approach in NASH.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S221287781831192X-main.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
3.94 MB
Formato
Adobe PDF
|
3.94 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.