Purpose In pulmonary hypertension (PH), hypoxia represents both an outcome and a cause of exacerbation.We addressed the question whether hypoxia adaptation might affect the mechanisms underlying PH alleviation through phosphodiesterase-5 (PDE5) inhibition. Methods Eight-week-old male Sprague-Dawley rats were divided into two groups depending on treatment (placebo or sildenafil, a drug inhibiting PDE5) and were exposed to hypoxia (10% O2) for 0 (t0, n = 9/10), 2 (t2, n = 5/5) or 4 (t4, n = 5/5) weeks. The rats were treated (0.3 mL i.p.) with either saline or sildenafil (1.4 mg/Kg per day). Results Two-week hypoxia changed the body weight (− 31% vs. − 27%, respectively, P = NS), blood hemoglobin (+ 25% vs. + 27%, P = NS) and nitrates+nitrites (+ 175% vs. + 261%, P = 0.007), right ventricle fibrosis (+ 814% vs. + 317%, P < 0.0001), right ventricle hypertrophy (+ 84% vs. + 49%, P = 0.007) and systolic pressure (+ 108% vs. + 41%, P = 0.001), pulmonary vessel density (+ 61% vs. + 46%, P = NS), and the frequency of small (< 50 µm wall thickness) vessels (+ 35% vs. + 13%, P = 0.0001). Most of these changes were maintained for 4-week hypoxia, except blood hemoglobin and right ventricle hypertrophy that continued increasing (+ 52% vs. + 42%, P = NS; and + 104% vs. + 83%, P = 0.04). To further assess these observations, small vessel frequency was found to be linearly related with the right ventricle-developed pressure independent of hypoxia duration. Conclusions Thus, although hypoxia adaptation is not yet accomplished after 4 weeks, PH alleviation by PDE5 inhibition might nevertheless provide an efficient strategy for the management of this disease

Effects of PDE-5 inhibition on the cardiopulmonary system after 2 or 4 weeks of chronic hypoxia / C. Nydegger, A. Corno, L. von Segesser, M. Beghetti, M. Samaja, G. Milano. - In: CARDIOVASCULAR DRUGS AND THERAPY. - ISSN 1573-7241. - (2019). [Epub ahead of print]

Effects of PDE-5 inhibition on the cardiopulmonary system after 2 or 4 weeks of chronic hypoxia

M. Samaja
Penultimo
;
2019

Abstract

Purpose In pulmonary hypertension (PH), hypoxia represents both an outcome and a cause of exacerbation.We addressed the question whether hypoxia adaptation might affect the mechanisms underlying PH alleviation through phosphodiesterase-5 (PDE5) inhibition. Methods Eight-week-old male Sprague-Dawley rats were divided into two groups depending on treatment (placebo or sildenafil, a drug inhibiting PDE5) and were exposed to hypoxia (10% O2) for 0 (t0, n = 9/10), 2 (t2, n = 5/5) or 4 (t4, n = 5/5) weeks. The rats were treated (0.3 mL i.p.) with either saline or sildenafil (1.4 mg/Kg per day). Results Two-week hypoxia changed the body weight (− 31% vs. − 27%, respectively, P = NS), blood hemoglobin (+ 25% vs. + 27%, P = NS) and nitrates+nitrites (+ 175% vs. + 261%, P = 0.007), right ventricle fibrosis (+ 814% vs. + 317%, P < 0.0001), right ventricle hypertrophy (+ 84% vs. + 49%, P = 0.007) and systolic pressure (+ 108% vs. + 41%, P = 0.001), pulmonary vessel density (+ 61% vs. + 46%, P = NS), and the frequency of small (< 50 µm wall thickness) vessels (+ 35% vs. + 13%, P = 0.0001). Most of these changes were maintained for 4-week hypoxia, except blood hemoglobin and right ventricle hypertrophy that continued increasing (+ 52% vs. + 42%, P = NS; and + 104% vs. + 83%, P = 0.04). To further assess these observations, small vessel frequency was found to be linearly related with the right ventricle-developed pressure independent of hypoxia duration. Conclusions Thus, although hypoxia adaptation is not yet accomplished after 4 weeks, PH alleviation by PDE5 inhibition might nevertheless provide an efficient strategy for the management of this disease
Chronic hypoxia . Adaptation . Phosphodiesterase-5 inhibition . Pulmonary angiogenesis . Right-ventricle hypertrophy
Settore BIO/10 - Biochimica
2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Nydegger2019_Article_EffectsOfPDE-5InhibitionOnTheC.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/652652
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact