We show that many spin 6-manifolds have the homotopy type but not the homeomorphism type of a Kähler manifold. Moreover, for given Betti numbers, there are only finitely many deformation types and hence topological types of smooth complex projective spin threefolds of general type. Finally, on a fixed spin 6-manifold, the Chern numbers take on only finitely many values on all possible Kähler structures.

Kähler structures on spin 6-manifolds / S. Schreieder, L. Tasin. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 373:1/2(2019 Feb), pp. 397-419. [10.1007/s00208-017-1615-2]

Kähler structures on spin 6-manifolds

L. Tasin
2019

Abstract

We show that many spin 6-manifolds have the homotopy type but not the homeomorphism type of a Kähler manifold. Moreover, for given Betti numbers, there are only finitely many deformation types and hence topological types of smooth complex projective spin threefolds of general type. Finally, on a fixed spin 6-manifold, the Chern numbers take on only finitely many values on all possible Kähler structures.
Settore MAT/03 - Geometria
feb-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Schreieder-Tasin2019_Article_KählerStructuresOnSpin6-manifo.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 352.29 kB
Formato Adobe PDF
352.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/652357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact