This paper presents the parsctst code, an efficient parallel implementation of the semiclassical transition state theory (SCTST) for reaction rate constant calculations. Parsctst is developed starting from a previously presented approach for the computation of the vibrational density of states of fully coupled anharmonic molecules (Nguyen et al. Chem. Phys. Lett. 2010, 499, 915). The parallel implementation makes it practical to tackle reactions involving more than 100 fully coupled anharmonic vibrational degrees of freedom and also includes multidimensional tunneling effects. After describing the pseudocode and demonstrating its computational efficiency, we apply the new code for estimating the rate constant of the proton transfer isomerization reaction of the 2,4,6-tri-tert-butylphenyl to 3,5-di-tert-butylneophyl. Comparison with both theoretical and experimental results is presented. Parsctst code is user-friendly and provides a significant computational time saving compared to serial calculations. We believe that parsctst can boost the application of SCTST as an alternative to the basic transition state theory for accurate kinetics modeling not only in combustion or atmospheric chemistry, but also in organic synthesis, where bigger reactive systems are encountered.
Parallel Implementation of Semiclassical Transition State Theory / C. Aieta, F. Gabas, M. Ceotto. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - 15:4(2019 Apr 09), pp. 2142-2153. [10.1021/acs.jctc.8b01286]
Parallel Implementation of Semiclassical Transition State Theory
C. AietaPrimo
;F. GabasSecondo
;M. Ceotto
Ultimo
2019
Abstract
This paper presents the parsctst code, an efficient parallel implementation of the semiclassical transition state theory (SCTST) for reaction rate constant calculations. Parsctst is developed starting from a previously presented approach for the computation of the vibrational density of states of fully coupled anharmonic molecules (Nguyen et al. Chem. Phys. Lett. 2010, 499, 915). The parallel implementation makes it practical to tackle reactions involving more than 100 fully coupled anharmonic vibrational degrees of freedom and also includes multidimensional tunneling effects. After describing the pseudocode and demonstrating its computational efficiency, we apply the new code for estimating the rate constant of the proton transfer isomerization reaction of the 2,4,6-tri-tert-butylphenyl to 3,5-di-tert-butylneophyl. Comparison with both theoretical and experimental results is presented. Parsctst code is user-friendly and provides a significant computational time saving compared to serial calculations. We believe that parsctst can boost the application of SCTST as an alternative to the basic transition state theory for accurate kinetics modeling not only in combustion or atmospheric chemistry, but also in organic synthesis, where bigger reactive systems are encountered.File | Dimensione | Formato | |
---|---|---|---|
Ceotto_19_AietaParSCTST.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Draft_Parsctst_resub.pdf
Open Access dal 10/04/2020
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
3.28 MB
Formato
Adobe PDF
|
3.28 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.