Non-Archimedean mathematics is an approach based on fields which contain infinitesimal and infinite elements. Within this approach, we construct a space of a particular class of generalized functions, ultrafunctions. The space of ultrafunctions can be used as a richer framework for a description of a physical system in quantum mechanics. In this paper, we provide a discussion of the space of ultrafunctions and its advantages in the applications of quantum mechanics, particularly for the Schrödinger equation for a Hamiltonian with the delta function potential.

Infinitesimal and infinite numbers as an approach to quantum mechanics / V. Benci, L.L. Baglini, K. Simonov. - In: QUANTUM. - ISSN 2521-327X. - 3:(2019), pp. 137.1-137.22. [10.22331/q-2019-05-03-137]

Infinitesimal and infinite numbers as an approach to quantum mechanics

L.L. Baglini
Secondo
;
2019

Abstract

Non-Archimedean mathematics is an approach based on fields which contain infinitesimal and infinite elements. Within this approach, we construct a space of a particular class of generalized functions, ultrafunctions. The space of ultrafunctions can be used as a richer framework for a description of a physical system in quantum mechanics. In this paper, we provide a discussion of the space of ultrafunctions and its advantages in the applications of quantum mechanics, particularly for the Schrödinger equation for a Hamiltonian with the delta function potential.
Nonstandard analysis; regularization; ultrafunctins; scattering; well
Settore MAT/01 - Logica Matematica
Settore MAT/05 - Analisi Matematica
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Infinitesimal and Infinite Numbers as an Approach to Quantum Mechanics.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 753.2 kB
Formato Adobe PDF
753.2 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/651069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact