We give new necessary and sufficient conditions on the Weyl tensor for generalized Robertson-Walker (GRW) space-times to be perfect-fluid space-times. For GRW space-times, we determine the form of the Ricci tensor in all the O(n)-invariant subspaces provided by Gray’s decomposition of the gradient of the Ricci tensor. In all but one, the Ricci tensor is Einstein or has the form of perfect fluid. We discuss the corresponding equations of state that result from the Einstein equation in dimension 4, where perfect-fluid GRW space-times are Robertson-Walker.

Perfect-fluid, generalized Robertson-Walker space-times, and Gray’s decomposition / C.A. Mantica, L.G. Molinari, Y.J. Suh, S. Shenawy. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 60:5(2019), pp. 052506.1-052506.9. [10.1063/1.5089040]

Perfect-fluid, generalized Robertson-Walker space-times, and Gray’s decomposition

L.G. Molinari;
2019

Abstract

We give new necessary and sufficient conditions on the Weyl tensor for generalized Robertson-Walker (GRW) space-times to be perfect-fluid space-times. For GRW space-times, we determine the form of the Ricci tensor in all the O(n)-invariant subspaces provided by Gray’s decomposition of the gradient of the Ricci tensor. In all but one, the Ricci tensor is Einstein or has the form of perfect fluid. We discuss the corresponding equations of state that result from the Einstein equation in dimension 4, where perfect-fluid GRW space-times are Robertson-Walker.
Warped space-time; Robertson-Walker space-time; perfect fluid; Ricci tensor
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Article (author)
File in questo prodotto:
File Dimensione Formato  
ManMolSuhShenREV_rev.pdf

accesso aperto

Descrizione: Final accepted version
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 253.8 kB
Formato Adobe PDF
253.8 kB Adobe PDF Visualizza/Apri
18) Gray_decomp_JMP .pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/646902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact