New N-substituted-2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives were synthesized employing a convenient one-pot three-component method and their structures were characterized by 1 H-NMR and single crystal X-ray diffraction analysis. All the synthesized compounds were in vitro screened for antimicrobial activity against Gram-positive (Sarcina lutea) and Gram-negative bacteria (Escherichia coli). In this work, we introduced a chiral residue on the tetrahydropyridine nitrogen, the hitherto the less investigated position on this pharmacophore in order to explore the effect. The antibacterial results showed that the synthesized compounds were active only against Gram-positive bacteria and the (R)-enantiomers displayed a greater antimicrobial potency than their (S)-counterparts. The structure–activity relationship here investigated may provide some interesting clues for future development of tetrahydrothienopyridine derivatives with higher antimicrobial activity.

Synthesis and Antimicrobial Evaluation of Novel Chiral 2-Amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine Derivatives / A. Rossetti, N. Bono, G. Candiani, F. Meneghetti, G. Roda, A. Sacchetti. - In: CHEMISTRY & BIODIVERSITY. - ISSN 1612-1872. - 16:6(2019 Jun). [10.1002/cbdv.201900097]

Synthesis and Antimicrobial Evaluation of Novel Chiral 2-Amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine Derivatives

F. Meneghetti;G. Roda;A. Sacchetti
2019

Abstract

New N-substituted-2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives were synthesized employing a convenient one-pot three-component method and their structures were characterized by 1 H-NMR and single crystal X-ray diffraction analysis. All the synthesized compounds were in vitro screened for antimicrobial activity against Gram-positive (Sarcina lutea) and Gram-negative bacteria (Escherichia coli). In this work, we introduced a chiral residue on the tetrahydropyridine nitrogen, the hitherto the less investigated position on this pharmacophore in order to explore the effect. The antibacterial results showed that the synthesized compounds were active only against Gram-positive bacteria and the (R)-enantiomers displayed a greater antimicrobial potency than their (S)-counterparts. The structure–activity relationship here investigated may provide some interesting clues for future development of tetrahydrothienopyridine derivatives with higher antimicrobial activity.
antimicrobial agents; biological activity; chiral amine; Gewald reaction; heterocycles; synthesis design; tetrahydrothieno[2,3-c]pyridine; bioengineering; biochemistry; chemistry (all); molecular medicine; molecular biology
Settore CHIM/08 - Chimica Farmaceutica
Settore CHIM/06 - Chimica Organica
giu-2019
3-apr-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Rossetti_et_al-2019-Chemistry_&_Biodiversity.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Chemistry_&_Biodiversity_manuscript.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/644431
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact