The attributable fraction is the candidate tool to quantify individual shares of each risk factor on the disease burden in a population, expressing the proportion of cases ascribable to the risk factors. The original formula ignored the presence of other factors (i.e. multiple risk factors and/or confounders), and several adjusting methods for potential confounders have been proposed. However, crude and adjusted attributable fractions do not sum up to their joint attributable fraction (i.e. the number of cases attributable to all risk factors together) and their sum may exceed one. A different approach consists of partitioning the joint attributable fraction into exposure-specific shares leading to sequential and average attributable fractions. We provide an example using Italian case-control data on oral cavity cancer comparing crude, adjusted, sequential, and average attributable fractions for smoking and alcohol and provide an overview of the available software routines for their estimation. For each method, we give interpretation and discuss shortcomings. Crude and adjusted attributable fractions added up over than one, whereas sequential and average methods added up to the joint attributable fraction = 0.8112 (average attributable fractions for smoking and alcohol were 0.4894 and 0.3218, respectively). The attributable fraction is a well-known epidemiological measure that translates risk factors prevalence and disease occurrence in useful figures for a public health perspective. This work endorses their proper use and interpretation.

Attributable fraction for multiple risk factors: Methods, interpretations, and examples / M. Di Maso, F. Bravi, J. Polesel, E. Negri, A. Decarli, D. Serraino, C. La Vecchia, M. Ferraroni. - In: STATISTICAL METHODS IN MEDICAL RESEARCH. - ISSN 0962-2802. - (2019 May 10). [Epub ahead of print] [10.1177/0962280219848471]

Attributable fraction for multiple risk factors: Methods, interpretations, and examples

Di Maso, Matteo;Bravi, Francesca;Negri, Eva;Decarli, Adriano;La Vecchia, Carlo;Ferraroni, Monica
2019-05-10

Abstract

The attributable fraction is the candidate tool to quantify individual shares of each risk factor on the disease burden in a population, expressing the proportion of cases ascribable to the risk factors. The original formula ignored the presence of other factors (i.e. multiple risk factors and/or confounders), and several adjusting methods for potential confounders have been proposed. However, crude and adjusted attributable fractions do not sum up to their joint attributable fraction (i.e. the number of cases attributable to all risk factors together) and their sum may exceed one. A different approach consists of partitioning the joint attributable fraction into exposure-specific shares leading to sequential and average attributable fractions. We provide an example using Italian case-control data on oral cavity cancer comparing crude, adjusted, sequential, and average attributable fractions for smoking and alcohol and provide an overview of the available software routines for their estimation. For each method, we give interpretation and discuss shortcomings. Crude and adjusted attributable fractions added up over than one, whereas sequential and average methods added up to the joint attributable fraction = 0.8112 (average attributable fractions for smoking and alcohol were 0.4894 and 0.3218, respectively). The attributable fraction is a well-known epidemiological measure that translates risk factors prevalence and disease occurrence in useful figures for a public health perspective. This work endorses their proper use and interpretation.
Attributable fraction; adjusted methods; case–control study; multiple risk factors; partitioning methods
Settore MED/01 - Statistica Medica
Article (author)
File in questo prodotto:
File Dimensione Formato  
0962280219848471.pdf

non disponibili

Tipologia: Publisher's version/PDF
Dimensione 295.86 kB
Formato Adobe PDF
295.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/643709
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact