We prove a few cases of a conjecture on the invariance of cohomological support loci under derived equivalence by establishing a concrete connection with the related problem of the invariance of Hodge numbers. We use the main case in order to study the derived behavior of fibrations over curves.

Derived equivalence and non-vanishing loci II / L. Lombardi, M. Popa (LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES). - In: Recent Advances in Algebraic Geometry : A Volume in Honor of Rob Lazarsfeld's 60th Birthday / [a cura di] C.D. Hacon, M. Mustata, M. Popa. - [s.l] : Cambridge University Press, 2015. - ISBN 9781107647558. - pp. 291-306 (( convegno Recent Advances in Algebraic Geometry tenutosi a Ann Arbor nel 2013 [10.1007/97811074160000.016].

Derived equivalence and non-vanishing loci II

L. Lombardi;
2015

Abstract

We prove a few cases of a conjecture on the invariance of cohomological support loci under derived equivalence by establishing a concrete connection with the related problem of the invariance of Hodge numbers. We use the main case in order to study the derived behavior of fibrations over curves.
derived categories; non-vanishing loci; Rouquier isomorphism; derived invariants;
Settore MAT/03 - Geometria
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
derivednonvanII.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 335.75 kB
Formato Adobe PDF
335.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
6) derived invariance nonvanishing loci.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 7.05 MB
Formato Adobe PDF
7.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/638744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact