Let f : X -> A be a morphism from a smooth projective variety to an abelian variety (over the field of complex numbers). We show that the sheaves f(*)omega(circle times m)(X) become globally generated after pullback by an isogeny. We use this to deduce a decomposition theorem for these sheaves when m >= 2, analogous to that obtained by Chen-Jiang when m = 1. This is in turn applied to effective results for pluricanonical linear series on irregular varieties with canonical singularities.
Pushforwards of pluricanonical bundles under morphisms to abelian varieties / L. Lombardi, M. Popa, C. Schnell. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - 22:8(2020), pp. 2511-2536.
Titolo: | Pushforwards of pluricanonical bundles under morphisms to abelian varieties |
Autori: | |
Parole Chiave: | Direct images; abelian varieties; non-vanishing loci; singular hermitian metrics; pluricanonical systems |
Settore Scientifico Disciplinare: | Settore MAT/03 - Geometria |
Data di pubblicazione: | 2020 |
Rivista: | |
URL: | https://arxiv.org/abs/1705.01975 |
Tipologia: | Article (author) |
Digital Object Identifier (DOI): | http://dx.doi.org/10.4171/JEMS/970 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
1705.01975.pdf | Post-print, accepted manuscript ecc. (versione accettata dall'editore) | Open Access Visualizza/Apri | ||
JEMS-2020-022-008-04.pdf | Publisher's version/PDF | Administrator Richiedi una copia |