Heterogeneity in meta-analysis describes differences in treatment effects between trials that exceed those we may expect through chance alone. Accounting for heterogeneity drives different statistical methods for summarizing data and, if heterogeneity is anticipated, a random-effects model will be preferred to the fixed-effects model. Random-effects models assume that there may be different underlying true effects estimated in each trial which are distributed about an overall mean. The confidence intervals (CIs) around the mean include both within-study and between-study components of variance (uncertainty). Summary effects provide an estimation of the average treatment effect, and the CI depicts the uncertainty around this estimate. There are 5 statistics that are computed to identify and quantify heterogeneity. They have different meaning and give complementary information: Q statistic and its P-value simply test whether effect sizes depart from homogeneity, T 2 and T quantify the amount of heterogeneity, and I 2 expresses the proportion of dispersion due to heterogeneity. The point estimate and CIs for random-effects models describe the practical implications of the observed heterogeneity and may usefully be contrasted with the fixed-effects estimates.

Statistical primer : heterogeneity, random- or fixed-effects model analyses? / F. Barili, A. Parolari, P.A. Kappetein, N. Freemantle. - In: INTERACTIVE CARDIOVASCULAR AND THORACIC SURGERY. - ISSN 1569-9293. - 27:3(2018), pp. 317-321. [10.1093/icvts/ivy163]

Statistical primer : heterogeneity, random- or fixed-effects model analyses?

F. Barili
;
A. Parolari;
2018

Abstract

Heterogeneity in meta-analysis describes differences in treatment effects between trials that exceed those we may expect through chance alone. Accounting for heterogeneity drives different statistical methods for summarizing data and, if heterogeneity is anticipated, a random-effects model will be preferred to the fixed-effects model. Random-effects models assume that there may be different underlying true effects estimated in each trial which are distributed about an overall mean. The confidence intervals (CIs) around the mean include both within-study and between-study components of variance (uncertainty). Summary effects provide an estimation of the average treatment effect, and the CI depicts the uncertainty around this estimate. There are 5 statistics that are computed to identify and quantify heterogeneity. They have different meaning and give complementary information: Q statistic and its P-value simply test whether effect sizes depart from homogeneity, T 2 and T quantify the amount of heterogeneity, and I 2 expresses the proportion of dispersion due to heterogeneity. The point estimate and CIs for random-effects models describe the practical implications of the observed heterogeneity and may usefully be contrasted with the fixed-effects estimates.
Meta-analysis; Statistical analysis; Surgery; Pulmonary and Respiratory Medicine; Cardiology and Cardiovascular Medicine
Settore MED/23 - Chirurgia Cardiaca
Article (author)
File in questo prodotto:
File Dimensione Formato  
ivy163.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 525.15 kB
Formato Adobe PDF
525.15 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/638549
Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 73
social impact