We determine all Chern numbers of smooth complex projective varieties of dimension at least 4 which are determined up to finite ambiguity by the underlying smooth manifold. We also give an upper bound on the dimension of the space of linear combinations of Chern numbers with that property and prove its optimality in dimension 4.

Algebraic structures with unbounded Chern numbers / S. Schreieder, L. Tasin. - In: JOURNAL OF TOPOLOGY. - ISSN 1753-8416. - 9:3(2016), pp. 849-860. [10.1112/jtopol/jtw011]

Algebraic structures with unbounded Chern numbers

L. Tasin
2016

Abstract

We determine all Chern numbers of smooth complex projective varieties of dimension at least 4 which are determined up to finite ambiguity by the underlying smooth manifold. We also give an upper bound on the dimension of the space of linear combinations of Chern numbers with that property and prove its optimality in dimension 4.
Geometry and Topology
Settore MAT/03 - Geometria
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
Algebraic structures with unbounded Chern numbers.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 200.42 kB
Formato Adobe PDF
200.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/638208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact