We show that the Ambro–Kawamata nonvanishing conjecture holds true for a quasismooth WCI X which is Fano or Calabi–Yau, i.e., we prove that, if H is an ample Cartier divisor on X, then |H| is not empty. If X is smooth, we further show that the general element of |H| is smooth. We then verify the Ambro– Kawamata conjecture for any quasismooth weighted hypersurface. We also verify Fujita’s freeness conjecture for a Gorenstein quasismooth weighted hypersurface. For the proofs, we introduce the arithmetic notion of regular pairs and highlight some interesting connections with the Frobenius coin problem.
Effective nonvanishing for fano weighted complete intersections / M. Pizzato, T. Sano, L. Tasin. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 11:10(2017), pp. 2369-2395.
Titolo: | Effective nonvanishing for fano weighted complete intersections |
Autori: | |
Parole Chiave: | Ambro–Kawamata conjecture; Nonvanishing; Weighted complete intersections; Algebra and Number Theory |
Settore Scientifico Disciplinare: | Settore MAT/03 - Geometria |
Data di pubblicazione: | 2017 |
Rivista: | |
Tipologia: | Article (author) |
Digital Object Identifier (DOI): | http://dx.doi.org/10.2140/ant.2017.11.2369 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Effective non-vanishing.pdf | Publisher's version/PDF | Administrator Richiedi una copia |