We show that the Ambro–Kawamata nonvanishing conjecture holds true for a quasismooth WCI X which is Fano or Calabi–Yau, i.e., we prove that, if H is an ample Cartier divisor on X, then |H| is not empty. If X is smooth, we further show that the general element of |H| is smooth. We then verify the Ambro– Kawamata conjecture for any quasismooth weighted hypersurface. We also verify Fujita’s freeness conjecture for a Gorenstein quasismooth weighted hypersurface. For the proofs, we introduce the arithmetic notion of regular pairs and highlight some interesting connections with the Frobenius coin problem.

Effective nonvanishing for fano weighted complete intersections / M. Pizzato, T. Sano, L. Tasin. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 11:10(2017), pp. 2369-2395.

Effective nonvanishing for fano weighted complete intersections

L. Tasin
2017

Abstract

We show that the Ambro–Kawamata nonvanishing conjecture holds true for a quasismooth WCI X which is Fano or Calabi–Yau, i.e., we prove that, if H is an ample Cartier divisor on X, then |H| is not empty. If X is smooth, we further show that the general element of |H| is smooth. We then verify the Ambro– Kawamata conjecture for any quasismooth weighted hypersurface. We also verify Fujita’s freeness conjecture for a Gorenstein quasismooth weighted hypersurface. For the proofs, we introduce the arithmetic notion of regular pairs and highlight some interesting connections with the Frobenius coin problem.
Ambro–Kawamata conjecture; Nonvanishing; Weighted complete intersections; Algebra and Number Theory
Settore MAT/03 - Geometria
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
Effective non-vanishing.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/638204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact