We show that the Ambro–Kawamata nonvanishing conjecture holds true for a quasismooth WCI X which is Fano or Calabi–Yau, i.e., we prove that, if H is an ample Cartier divisor on X, then |H| is not empty. If X is smooth, we further show that the general element of |H| is smooth. We then verify the Ambro– Kawamata conjecture for any quasismooth weighted hypersurface. We also verify Fujita’s freeness conjecture for a Gorenstein quasismooth weighted hypersurface. For the proofs, we introduce the arithmetic notion of regular pairs and highlight some interesting connections with the Frobenius coin problem.
Effective nonvanishing for fano weighted complete intersections / M. Pizzato, T. Sano, L. Tasin. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 11:10(2017), pp. 2369-2395.
Effective nonvanishing for fano weighted complete intersections
L. Tasin
2017
Abstract
We show that the Ambro–Kawamata nonvanishing conjecture holds true for a quasismooth WCI X which is Fano or Calabi–Yau, i.e., we prove that, if H is an ample Cartier divisor on X, then |H| is not empty. If X is smooth, we further show that the general element of |H| is smooth. We then verify the Ambro– Kawamata conjecture for any quasismooth weighted hypersurface. We also verify Fujita’s freeness conjecture for a Gorenstein quasismooth weighted hypersurface. For the proofs, we introduce the arithmetic notion of regular pairs and highlight some interesting connections with the Frobenius coin problem.File | Dimensione | Formato | |
---|---|---|---|
Effective non-vanishing.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.