Let X be a variety with terminal singularities of dimension n. We study local contractions f: X → Z supported by a ℚ-Cartier divisor of the type KX + τL, where L is an f-ample Cartier divisor and τ > 0 is a rational number. Equivalently, f is a Fano-Mori contraction associated to an extremal face in NE(X)KX+τL=0. We prove that, if τ > (n - 3) > 0, the general element X′ ϵ \L\ is a variety with at most terminal singularities. We apply this to characterize, via an inductive argument, some birational contractions as above with τ > (n - 3) > 0.
Local Fano-Mori contractions of high nef-value / M. Andreatta, L. Tasin. - In: MATHEMATICAL RESEARCH LETTERS. - ISSN 1073-2780. - 23:5(2016), pp. 1247-1262.
Titolo: | Local Fano-Mori contractions of high nef-value |
Autori: | |
Parole Chiave: | Mathematics (all) |
Settore Scientifico Disciplinare: | Settore MAT/03 - Geometria |
Data di pubblicazione: | 2016 |
Rivista: | |
Tipologia: | Article (author) |
Digital Object Identifier (DOI): | http://dx.doi.org/10.4310/MRL.2016.v23.n5.a1 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Local Fano-Mori contractions 2016.pdf | Publisher's version/PDF | Administrator Richiedi una copia |