Let X be a projective variety with Q-factorial terminal singularities and let L be an ample Cartier divisor on X. We prove that if f is a birational contraction associated to an extremal ray R subset of <(NE(X))over bar> such that R center dot(K-X+(n-2)L)< 0, then f is a weighted blow-up of a smooth point. We then classify divisorial contractions associated to extremal rays R such that R center dot(K-X+rL)< 0, where r is a non-negative integer, and the fibres of f have dimension less than or equal to r+1.
Fano-Mori contractions of high length on projective varieties with terminal singularities / M. Andreatta, L. Tasin. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 46:1(2014), pp. 185-196.
Titolo: | Fano-Mori contractions of high length on projective varieties with terminal singularities |
Autori: | TASIN, LUCA (Corresponding) |
Parole Chiave: | Mathematics (all) |
Settore Scientifico Disciplinare: | Settore MAT/03 - Geometria |
Data di pubblicazione: | 2014 |
Rivista: | |
Tipologia: | Article (author) |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1112/blms/bdt083 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Fano-Mori contractions of high length 2014.pdf | Publisher's version/PDF | Administrator Richiedi una copia |