Dye-Sensitized Solar Cells (DSSCs) are a highly promising alternative to conventional photovoltaic silicon-based devices, due to the potential low cost and the interesting conversion efficiencies. A key-role is played by the dye, and porphyrin sensitizers have drawn great interest because of their excellent light harvesting properties mimicking photosynthesis. Indeed, porphyrins are characterized by strong electronic absorption bands in the visible region up to the near infrared and by long-lived π* singlet excited states. Moreover, the presence of four meso and eight β-pyrrolic positions allows a fine tuning of their photoelectrochemical properties through structural modification. Trans-A2BC push-pull ZnII porphyrins, characterized by a strong and directional electron excitation process along the push-pull system, have been extensively investigated. On the other hand, A4 β-pyrrolic substituted tetraaryl ZnII porphyrins, which incorporate a tetraaryl porphyrinic core as a starting material, have received lower attention, even if they are synthetically more attractive and show several advantages such as a more sterically hindered architecture and enhanced solubility in most common organic solvents. The present contribution intends to review the most prominent A4 β-substituted ZnII porphyrins reported in the literature so far for application in DSSCs, focusing on the strategies employed to enhance the light harvesting capability of the dye and on a comparison with meso-substituted analogs.

Efficient sunlight harvesting by A4 b-pyrrolic substituted ZnII porphyrins : a mini-review / G. Di Carlo, A. Orbelli Biroli, M. Pizzotti, F. Tessore. - In: FRONTIERS IN CHEMISTRY. - ISSN 2296-2646. - 7(2019 Apr 11), pp. 177.1-177.22. [10.3389/fchem.2019.00177]

Efficient sunlight harvesting by A4 b-pyrrolic substituted ZnII porphyrins : a mini-review

G. Di Carlo
Primo
;
A. Orbelli Biroli;M. Pizzotti;F. Tessore
Ultimo
2019

Abstract

Dye-Sensitized Solar Cells (DSSCs) are a highly promising alternative to conventional photovoltaic silicon-based devices, due to the potential low cost and the interesting conversion efficiencies. A key-role is played by the dye, and porphyrin sensitizers have drawn great interest because of their excellent light harvesting properties mimicking photosynthesis. Indeed, porphyrins are characterized by strong electronic absorption bands in the visible region up to the near infrared and by long-lived π* singlet excited states. Moreover, the presence of four meso and eight β-pyrrolic positions allows a fine tuning of their photoelectrochemical properties through structural modification. Trans-A2BC push-pull ZnII porphyrins, characterized by a strong and directional electron excitation process along the push-pull system, have been extensively investigated. On the other hand, A4 β-pyrrolic substituted tetraaryl ZnII porphyrins, which incorporate a tetraaryl porphyrinic core as a starting material, have received lower attention, even if they are synthetically more attractive and show several advantages such as a more sterically hindered architecture and enhanced solubility in most common organic solvents. The present contribution intends to review the most prominent A4 β-substituted ZnII porphyrins reported in the literature so far for application in DSSCs, focusing on the strategies employed to enhance the light harvesting capability of the dye and on a comparison with meso-substituted analogs.
dye-sensitized solar cells; light harvesting; porphyrin-sensitized solar cells; porphyrins; solar energy
Settore CHIM/03 - Chimica Generale e Inorganica
11-apr-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Front. Chem. 2019, 7, 177.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/638047
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact