Differently shape-controlled anatase TiO2 materials were tested as photocatalysts under both simulated and natural solar irradiation. Their photocatalytic activity in 2-propanol and propene partial oxidation and in the complete mineralization of acetaldehyde appears to increase with decreasing the shape control of the TiO2 material. This insight seems to be related to the residual presence of the templating species (fluoride anions) employed during the preparation of the shape-controlled TiO2 materials. In fact, the calcination of the powders, leading to levelling of the fluoride ions content, but also to a remarkable surface area decrease, gave rise to an increase of photocatalytic activity per unit surface area of the materials. In these photocatalytic materials two opposing effects may concur in determining their photoactivity, i.e. the possibly beneficial effect of an increased extent of exposed {001} facets and the detrimental effect resulting from a larger amount of residual fluoride ions employed as capping agents during their synthesis.
Photoactivity of shape-controlled TiO2 in gas-solid regime under solar irradiation / E.I. Garcia-Lopes, G. Marcì, M.V. Dozzi, L. Palmisano, E. Selli. - In: CATALYSIS TODAY. - ISSN 0920-5861. - 328(2019), pp. 118-124. [10.1016/j.cattod.2019.01.038]
Photoactivity of shape-controlled TiO2 in gas-solid regime under solar irradiation
M.V. Dozzi;E. Selli
Ultimo
2019
Abstract
Differently shape-controlled anatase TiO2 materials were tested as photocatalysts under both simulated and natural solar irradiation. Their photocatalytic activity in 2-propanol and propene partial oxidation and in the complete mineralization of acetaldehyde appears to increase with decreasing the shape control of the TiO2 material. This insight seems to be related to the residual presence of the templating species (fluoride anions) employed during the preparation of the shape-controlled TiO2 materials. In fact, the calcination of the powders, leading to levelling of the fluoride ions content, but also to a remarkable surface area decrease, gave rise to an increase of photocatalytic activity per unit surface area of the materials. In these photocatalytic materials two opposing effects may concur in determining their photoactivity, i.e. the possibly beneficial effect of an increased extent of exposed {001} facets and the detrimental effect resulting from a larger amount of residual fluoride ions employed as capping agents during their synthesis.| File | Dimensione | Formato | |
|---|---|---|---|
|
accepted_version.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
|
1-s2.0-S0920586118310770-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




