We prove an explicit version of the Chebotarev theorem for the density of prime ideals with fixed Artin symbol, under the assumption of the validity of the Riemann hypothesis for the Dedekind zeta functions. In appendix we also give some explicit formulas counting non-trivial zeros of Hecke's L-functions, in that case without assuming the truth of the Riemann hypothesis.
An explicit Chebotarev density theorem under GRH / L. Grenié, G. Molteni. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. - 200:(2019), pp. 441-485. [10.1016/j.jnt.2018.12.005]
An explicit Chebotarev density theorem under GRH
G. Molteni
2019
Abstract
We prove an explicit version of the Chebotarev theorem for the density of prime ideals with fixed Artin symbol, under the assumption of the validity of the Riemann hypothesis for the Dedekind zeta functions. In appendix we also give some explicit formulas counting non-trivial zeros of Hecke's L-functions, in that case without assuming the truth of the Riemann hypothesis.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
45-molteni-An_effective_Chebotarev_density_theorem_under_GRH.pdf
Open Access dal 17/05/2021
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
569.11 kB
Formato
Adobe PDF
|
569.11 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0022314X19300174-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
632.96 kB
Formato
Adobe PDF
|
632.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.