We consider the spatial central force problem with a real analytic potential. We prove that for all analytic potentials, but for the Keplerian and the harmonic ones, the Hamiltonian fulfills a nondegeneracy property needed for the applicability of Nekhoroshev’s theorem. We deduce stability of the actions over exponentially long times when the system is subject to an arbitrary analytic perturbation. The case where the central system is put in interaction with a slow system is also studied and stability over exponentially long time is proved.

Exponential Stability in the Perturbed Central Force Problem / D. Bambusi, A. Fusè, M. Sansottera. - In: REGULAR & CHAOTIC DYNAMICS. - ISSN 1560-3547. - 23:7-8(2018), pp. 821-841. [10.1134/S156035471807002X]

Exponential Stability in the Perturbed Central Force Problem

D. Bambusi
;
A. Fusè
;
M. Sansottera
2018

Abstract

We consider the spatial central force problem with a real analytic potential. We prove that for all analytic potentials, but for the Keplerian and the harmonic ones, the Hamiltonian fulfills a nondegeneracy property needed for the applicability of Nekhoroshev’s theorem. We deduce stability of the actions over exponentially long times when the system is subject to an arbitrary analytic perturbation. The case where the central system is put in interaction with a slow system is also studied and stability over exponentially long time is proved.
34C20; 37G05; 70F15; 70K45; central force problem; exponential stability; Nekhoroshev theory; normal form theory; perturbation theory; Mathematics (miscellaneous)
Settore MAT/07 - Fisica Matematica
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
10.1134_S156035471807002X.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 551.8 kB
Formato Adobe PDF
551.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1705.00576.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 646.63 kB
Formato Adobe PDF
646.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/632158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact