Knowledge of the three-dimensional structure of therapeutically relevant proteins paves the way for novel strategies in pharmacological research (such as the structure-based drug design (SBDD) method) and establishes the foundations for structural bioinformatics. In this context, during my PhD Thesis, two therapeutically relevant proteins have been studied. First, a membrane protein, Acid Sensing Ion Channel (ASIC) isoform 1, a validated target in neurodegenerative disorders, was selected. Previous studies showed that diminazene aceturate (DA) is a potent small-molecule inhibitor of ASIC channels. Here, several DA analogues were screened by molecular docking and the best binders were tested in cell-based assays to further assess their efficacy. In order to determine the inhibitory capability of the synthesized analogues in vitro on the purified protein, the expression of ASIC1 was undertaken, using different organisms of expression. The protein purification was performed in a high-throughput approach in order to recover enough protein for crystallization, with the final aim of studying the mechanism of action of DA analogs, and support the design of new, isoform-selective and brain-penetrant drugs. Secondly, the soluble protein Gelsolin (GSN), responsible for a familial degenerative disease (AGel amyloidosis) was studied. Aim of this project was to understand the impact of the D187N mutation on GSN structure and its propensity to aberrant aggregation and/or degradation. D187N GSN mutant was the first identified in man, but its crystal structure had until now eluded any characterization. Conversely, a nanobody (Nb11) was shown to protect GSN from aberrant proteolysis, but its mechanism of protection remained unclear. Here, the structure of the Nb11:D187N complex was solved at 1.9 Å resolution, enabling the characterization of the Nb11action mechanism. The structural data were complemented with biophysical and biochemical characterisations. These studies were then extended to two recently identified pathological variants of GSN (G167R and N184K).
La conoscenza della struttura tridimensionale di un potenziale target farmacologico apre la via a nuove strategie terapeutiche (ad esempio tramite structure-based drug design (SBDD)) ed è requisito fondamentale per la bioinformatica strutturale. In questo contesto, durante la mia tesi di dottorato, sono state studiate due proteine di interesse biomedico. La prima è una proteina di membrana, l’isoforma 1 dell’Acid Sensing Ion Channel (ASIC), implicata in diverse malattie neurodegenerative. In studi precedenti il diminazene aceturato (DA) si era dimostrato un potente inibitore del canale. Diversi analoghi di DA sono stati progettati su base strutturale e la loro affinità per ASIC analizzata tramite docking molecolare. Le molecole migliori sono state testate in saggi cellulari per valutarne l’efficacia. Per caratterizzare la capacità inibitoria degli analoghi sintetizzati in vitro, è stato messo a punto un protocollo per la produzione della proteina ASIC1, utilizzando diversi sistemi di espressione eterologa. La purificazione della proteina è stata effettuata usando un approccio high-throughput per supportare successivamente la cristallizzazione della proteina, al fine di ottenere informazioni più dettagliate sul meccanismo d’azione degli analoghi del DA e, di conseguenza, disegnare nuovi farmaci, isoforma-selettivi e in grado di attraversare la barriera emato-encefalica. In secondo luogo, ho studiato la proteina Gelsolin (GSN), responsabile di una malattia familiare degenerativa (detta amiloidosi AGel). Lo scopo di questo progetto era quello di investigare l'effetto della mutazione D187N sulla struttura di GSN e la sua propensione ad aggregare e/o degradarsi in maniera anomala. Il D187N GSN è stato il primo mutante ad essere identificato, ma, ad oggi, non si avevano informazioni sulla sua struttura. In uno studio precedente, era stato identificato un nanobody (Nb11) in grado di proteggere la proteina dalla degradazione, ma il meccanismo di protezione non era stato chiarito. Nel mio lavoro ho risolto la struttura del complesso Nb11:D187N a 1.9 Å, permettendo la caratterizzazione molecolare del meccanismo di azione del Nb11. I dati strutturali ottenuti sono stati completati con una caratterizzazione biofisica e biochimica, estesa anche ad altre due varianti patologiche della GSN, recentemente identificate (G167R e N184K).
FROM PROTEIN STRUCTURE TO DRUG DESIGN (DISCOVERY): TARGETING THE ION CHANNEL ASIC1 AND A PATHOGENIC VARIANT OF HUMAN GELSOLIN / A. Hassan ; scientific tutor: M. Bolognesi ; scientific cotutors: E. Mastrangelo, M. De Rosa. DIPARTIMENTO DI BIOSCIENZE, 2019 Mar 15. 31. ciclo, Anno Accademico 2018. [10.13130/hassan-amal_phd2019-03-15].
FROM PROTEIN STRUCTURE TO DRUG DESIGN (DISCOVERY): TARGETING THE ION CHANNEL ASIC1 AND A PATHOGENIC VARIANT OF HUMAN GELSOLIN.
A. Hassan
2019
Abstract
Knowledge of the three-dimensional structure of therapeutically relevant proteins paves the way for novel strategies in pharmacological research (such as the structure-based drug design (SBDD) method) and establishes the foundations for structural bioinformatics. In this context, during my PhD Thesis, two therapeutically relevant proteins have been studied. First, a membrane protein, Acid Sensing Ion Channel (ASIC) isoform 1, a validated target in neurodegenerative disorders, was selected. Previous studies showed that diminazene aceturate (DA) is a potent small-molecule inhibitor of ASIC channels. Here, several DA analogues were screened by molecular docking and the best binders were tested in cell-based assays to further assess their efficacy. In order to determine the inhibitory capability of the synthesized analogues in vitro on the purified protein, the expression of ASIC1 was undertaken, using different organisms of expression. The protein purification was performed in a high-throughput approach in order to recover enough protein for crystallization, with the final aim of studying the mechanism of action of DA analogs, and support the design of new, isoform-selective and brain-penetrant drugs. Secondly, the soluble protein Gelsolin (GSN), responsible for a familial degenerative disease (AGel amyloidosis) was studied. Aim of this project was to understand the impact of the D187N mutation on GSN structure and its propensity to aberrant aggregation and/or degradation. D187N GSN mutant was the first identified in man, but its crystal structure had until now eluded any characterization. Conversely, a nanobody (Nb11) was shown to protect GSN from aberrant proteolysis, but its mechanism of protection remained unclear. Here, the structure of the Nb11:D187N complex was solved at 1.9 Å resolution, enabling the characterization of the Nb11action mechanism. The structural data were complemented with biophysical and biochemical characterisations. These studies were then extended to two recently identified pathological variants of GSN (G167R and N184K).File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R11192_1.pdf
Open Access dal 05/09/2020
Descrizione: phd_unimi_R11192_1
Tipologia:
Tesi di dottorato completa
Dimensione
16.4 MB
Formato
Adobe PDF
|
16.4 MB | Adobe PDF | Visualizza/Apri |
phd_unimi_R11192_2.pdf
Open Access dal 05/09/2020
Descrizione: phd_unimi_R11192_2
Tipologia:
Tesi di dottorato completa
Dimensione
2.88 MB
Formato
Adobe PDF
|
2.88 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.