Current tests of general relativity (GR) remain confined to the scale of stellar systems or the strong gravity regime. A departure from GR on cosmological scales has been advocated1 as an alternative to the cosmological constant Λ (ref. 2) to account for the observed cosmic expansion history3,4. However, such models yield distinct values for the linear growth rate of density perturbations and consequently for the associated galaxy peculiar velocity field. Measurements of the resulting anisotropy of galaxy clustering5,6 have thus been proposed as a powerful probe of the validity of GR on cosmological scales7, but despite substantial efforts8,9, they suffer from systematic errors comparable to statistical uncertainties10. Here, we present the results of a forward-modelling approach that fully exploits the sensitivity of the galaxy velocity field to modifications of GR. We use state-of-the-art high-resolution N-body simulations of a standard GR (Λ cold dark matter (CDM)) model11 and a compelling f(R) model12—one of GR’s simplest variants, in which the Ricci scalar curvature, R, in the Einstein–Hilbert action is replaced by an arbitrary function of R—to build simulated catalogues of stellar-mass-selected galaxies through a robust match to the Sloan Digital Sky Survey13. We find that f(R) fails to reproduce the observed redshift-space clustering on scales of ~1–10 Mpc h−1, where h is the dimensionless Hubble parameter. Instead, the standard ΛCDM GR model agrees impressively well with the data. This result provides strong confirmation, on cosmological scales, of the robustness of Einstein’s general theory of relativity.

No evidence for modifications of gravity from galaxy motions on cosmological scales / J. He, L. Guzzo, B. Li, C.M. Baugh. - In: NATURE ASTRONOMY. - ISSN 2397-3366. - 2:12(2018 Dec), pp. 967-972.

No evidence for modifications of gravity from galaxy motions on cosmological scales

L. Guzzo;
2018

Abstract

Current tests of general relativity (GR) remain confined to the scale of stellar systems or the strong gravity regime. A departure from GR on cosmological scales has been advocated1 as an alternative to the cosmological constant Λ (ref. 2) to account for the observed cosmic expansion history3,4. However, such models yield distinct values for the linear growth rate of density perturbations and consequently for the associated galaxy peculiar velocity field. Measurements of the resulting anisotropy of galaxy clustering5,6 have thus been proposed as a powerful probe of the validity of GR on cosmological scales7, but despite substantial efforts8,9, they suffer from systematic errors comparable to statistical uncertainties10. Here, we present the results of a forward-modelling approach that fully exploits the sensitivity of the galaxy velocity field to modifications of GR. We use state-of-the-art high-resolution N-body simulations of a standard GR (Λ cold dark matter (CDM)) model11 and a compelling f(R) model12—one of GR’s simplest variants, in which the Ricci scalar curvature, R, in the Einstein–Hilbert action is replaced by an arbitrary function of R—to build simulated catalogues of stellar-mass-selected galaxies through a robust match to the Sloan Digital Sky Survey13. We find that f(R) fails to reproduce the observed redshift-space clustering on scales of ~1–10 Mpc h−1, where h is the dimensionless Hubble parameter. Instead, the standard ΛCDM GR model agrees impressively well with the data. This result provides strong confirmation, on cosmological scales, of the robustness of Einstein’s general theory of relativity.
Astronomy and Astrophysics
Settore FIS/05 - Astronomia e Astrofisica
   Illuminating Dark Energy with the Next Generation of Cosmological Redshift Surveys
   DARKLIGHT
   EUROPEAN COMMISSION
   FP7
   291521
dic-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
He_etal_2018_postprint.pdf

Open Access dal 17/08/2019

Descrizione: Post-print version, according to Nature rules
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 6.76 MB
Formato Adobe PDF
6.76 MB Adobe PDF Visualizza/Apri
s41550-018-0573-2.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/628782
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 31
social impact