PSI-E is part of the stromal side of photosystem I (PSI). In Arabidopsis thaliana, the two nuclear genes PsaE1 and PsaE2 code for PSI-E, and transcripts of PsaE1 are markedly more abundant than PsaE2 transcripts. Stable null alleles of the two PsaE genes, psae1-3 and psae2-1, were identiWed and characterised. The psae2-1 mutant exhibited wild-type like PSI-E abundance and photosynthetic performance, whereas in the psae1-3 mutant PSI-E accumulation was decreased by 85%, together with an impaired thylakoid electron Xow and plant growth rate. The psae1-3 psae2-1 double mutant totally lacked PSI-E but was still able to grow photoautotrophically, implying that PSI-E is not essential for PSI accumulation and thylakoid electron flow
The E subunit of photosystem I is not essential for linear electron flow and photoautotrophic growth in Arabidopsis thaliana / A. Inhatowicz, P. Pesaresi, D. Leister. - In: PLANTA. - ISSN 0032-0935. - 226:4(2007 Sep), pp. 889-895.
The E subunit of photosystem I is not essential for linear electron flow and photoautotrophic growth in Arabidopsis thaliana
P. PesaresiSecondo
;
2007
Abstract
PSI-E is part of the stromal side of photosystem I (PSI). In Arabidopsis thaliana, the two nuclear genes PsaE1 and PsaE2 code for PSI-E, and transcripts of PsaE1 are markedly more abundant than PsaE2 transcripts. Stable null alleles of the two PsaE genes, psae1-3 and psae2-1, were identiWed and characterised. The psae2-1 mutant exhibited wild-type like PSI-E abundance and photosynthetic performance, whereas in the psae1-3 mutant PSI-E accumulation was decreased by 85%, together with an impaired thylakoid electron Xow and plant growth rate. The psae1-3 psae2-1 double mutant totally lacked PSI-E but was still able to grow photoautotrophically, implying that PSI-E is not essential for PSI accumulation and thylakoid electron flowPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.